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Bayesian inference

A central problem in Bayesian inference is approximating an
intractable posterior distribution p and estimating intractable
expectations Ep [f(X)] =

∫
f(x)p(x) dx with respect to p.

Bayesian inference uses an entire distribution over the parameters for
estimation.
For example, we can compute:

I posterior mean and covariance
I quantiles
I marginal distributions

However, Bayesian inference is generally more computationally
challenging.
The goal is to do inference accurately and efficiently.
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MCMC and VI

Markov Chain Monte Carlo (MCMC) methods are a large class of
sampling-based algorithms.

I samples x1, x2, . . . represent p
I the sample average 1

M

∑M
i=1 f(xi) is an asymptotically exact estimator

of Ep [f(X)] as M →∞.

Variational inference (VI) methods recast the inference problem as a
parametric optimization problem.
MCMC methods are asymptotically exact but can be slow; VI methods
can be fast but are generally biased.
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Particle-based Variational Inference

Particle-based Variational Inference methods (ParVIs) are
nonparametric variational inference methods that optimize a set of
particles {x(1), x(2), . . . , x(M)} to best represent p.

Stein Variational Gradient Descent (SVGD)
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An important question for ParVIs is the quality of the posterior
inference for a given posterior distribution p.

I How well do the particles {x(1), x(2), . . . , x(M)} represent p in practice?
I How accurate is the estimator 1
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(i)) for Ep [f(X)] in
practice?
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Motivation

For accurate posterior inference, highly accurate solutions to the ParVI
optimization problem are needed.

We leverage ideas from large-scale optimization.
Stochastic gradient descent (SGD)

I can reach an approximate solution relatively quickly
I but has slow asymptotic convergence

Variance reduction methods for SGD, like SVRG

I accelerate convergence for strongly convex problems when highly
accurate solutions are needed

Quasi-Newton methods, like L-BFGS

I speed up convergence for ill-conditioned problems by approximating the
inverse Hessian

I but traditionally are full-dataset methods

Combining stochastic quasi-Newton methods and variance reduction
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Wasserstein optimization perspective of ParVIs

However, ParVIs are not optimizing some function on the particle
space, so directly applying the optimization techniques to the ParVI
update rule of each particle is not technically sound.

Fortunately, ParVIs have been understood as minimizing the KL
divergence KLp(q) := Eq[log q/p] between the variational distribution
q and the target distribution p on a general distribution space, the
Wasserstein space.
The Wasserstein space has a Riemannian structure, so we can leverage
Riemannian optimization techniques.
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ParVIs on the Wasserstein space

ParVIs can be formulated as optimizing KLp(q) on the Wasserstein
space by simulating the gradient flow of KLp.

With the Riemannian structure of the Wasserstein space, the gradient
can be expressed as:

gradKLp(q) = ∇ log(q/p).

Let {x(i)}Mi=1 be a set of particles of q. The gradient flow simulation
can be carried out by successively updating particles using a
particle-based numerical approximation of gradKLp(q):

x
(i)
k+1 ← x

(i)
k − εĜ({x
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SGD for ParVIs
Let p0(x) be the prior and pn(x) := p(Dn|x) be the likelihood term
for data point Dn. The KL divergence can be decomposed as the sum:

KLp(q) = Eq[log q]− Eq[log p0]−
N∑

n=1

Eq[log pn] + logZ

The gradient over the full dataset is:

− gradKLp(q) =

U(q)︷ ︸︸ ︷
∇ log p0 −∇ log q+

V (q)︷ ︸︸ ︷
N∑

n=1

∇ log pn︸ ︷︷ ︸
Vn(q)

Let Û({x(j)}j)(i) and V̂n({x(j)}j)(i) be the particle-based numerical
approximations of U(q) and Vn(q) respectively.
The SGD update step is first sample a data point nk ∈ {1, · · · , N}
uniformly at random and then update

x
(i)
k+1 ← x

(i)
k + ε

(
Û({x(j)k }j)

(i) +NV̂nk
({x(j)k }j)

(i)
)
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Riemannian variance reduction and quasi-Newton

We want to derive variance reduction and quasi-Newton methods for
ParVIs based on Riemannian variance reduction and quasi-Newton
algorithms.

Riemannian variance reduction and quasi-Newton algorithms require
geometric structures of the Riemannian manifold like (inverse)
exponential map and parallel transport.

I e.g., for transporting a cached direction at a snapshot position to the
current position

We derive particle realizations of these operations under the
pairwise-close approximation, which are stable and do not increase the
order of computation cost.
Note that the algorithms we present in this talk are simplified under
the pairwise-close approximation.
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pairwise-close approximation, which are stable and do not increase the
order of computation cost.
Note that the algorithms we present in this talk are simplified under
the pairwise-close approximation.
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Stochastic Quasi-Newton with Variance Reduction
(SQN-VR) for ParVIs

In addition to variance reduction, we can further incorporate
quasi-Newton preconditioning techniques based on Riemannian
SQN-VR.

At the start of every outer loop,

I as in SVRG, the snapshot position {x̃(i)}Mi=1 and the corresponding
full-summation {Ṽ (i)}Mi=1 are stored, and

I the L-BFGS curvature pairs are updated, using the difference between
the current and previous snapshot position and the difference between
their corresponding full-summations.

In each subsequent iteration k,

I first compute the variance-reduced gradient as in SVRG, and
I then apply a quasi-Newton update using the L-BFGS two-loop

recursion with the variance reduced gradient.
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Experimental setup

We run experiments on Bayesian linear regression and logistic
regression datasets with a batch size of 10.

For the choice of ParVI, we use SVGD with 100 particles and the
linear kernel.
We compare the following optimization algorithms: SGD, AdaGrad
with momentum, SVRG, SPIDER, and SQN-VR.
Evaluation:

I We obtain a set of 40,000 ground-truth samples using MCMC.
1 Maximum Mean Discrepancy (MMD) between the 100 ParVI particles

and the 40,000 MCMC samples.
2 Mean-squared error for estimating posterior mean.
3 Mean-squared error for estimating posterior covariance.
4 Kernel Stein Discrepancy (KSD) for the 100 ParVI particles with

respect to the posterior distribution.
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Experimental results for Bayesian linear regression
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Experimental results for Bayesian logistic regression
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Summary

We propose a variance reduction and quasi-Newton preconditioning
framework for ParVIs.

Our methods are derived from the Wasserstein optimization
perspective of ParVIs and Riemannian optimization algorithms.
Our experimental results on Bayesian linear regression and logistic
regression show that our new methods result in a set of particles with
significantly better sample quality.
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