Variance Reduction and Quasi-Newton for Particle-Based Variational Inference

Michael H. Zhu¹ Chang Liu² Jun Zhu³

¹Stanford University

²Microsoft Research

³Tsinghua University

ICML 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• A central problem in Bayesian inference is approximating an intractable posterior distribution p and estimating intractable expectations $\mathbb{E}_p[f(X)] = \int f(x)p(x) \, \mathrm{d}x$ with respect to p.

- A central problem in Bayesian inference is approximating an intractable posterior distribution p and estimating intractable expectations $\mathbb{E}_p[f(X)] = \int f(x)p(x) \, \mathrm{d}x$ with respect to p.
- Bayesian inference uses an entire distribution over the parameters for estimation.

- A central problem in Bayesian inference is approximating an intractable posterior distribution p and estimating intractable expectations $\mathbb{E}_p[f(X)] = \int f(x)p(x) \, \mathrm{d}x$ with respect to p.
- Bayesian inference uses an entire distribution over the parameters for estimation.

• For example, we can compute:

- A central problem in Bayesian inference is approximating an intractable posterior distribution p and estimating intractable expectations $\mathbb{E}_p[f(X)] = \int f(x)p(x) \, \mathrm{d}x$ with respect to p.
- Bayesian inference uses an entire distribution over the parameters for estimation.

- For example, we can compute:
 - posterior mean and covariance

- A central problem in Bayesian inference is approximating an intractable posterior distribution p and estimating intractable expectations $\mathbb{E}_p[f(X)] = \int f(x)p(x) \, dx$ with respect to p.
- Bayesian inference uses an entire distribution over the parameters for estimation.

- For example, we can compute:
 - posterior mean and covariance
 - quantiles

- A central problem in Bayesian inference is approximating an intractable posterior distribution p and estimating intractable expectations $\mathbb{E}_p[f(X)] = \int f(x)p(x) \, dx$ with respect to p.
- Bayesian inference uses an entire distribution over the parameters for estimation.

- For example, we can compute:
 - posterior mean and covariance
 - quantiles
 - marginal distributions

- A central problem in Bayesian inference is approximating an intractable posterior distribution p and estimating intractable expectations $\mathbb{E}_p[f(X)] = \int f(x)p(x) \, dx$ with respect to p.
- Bayesian inference uses an entire distribution over the parameters for estimation.
- For example, we can compute:
 - posterior mean and covariance
 - quantiles
 - marginal distributions
- However, Bayesian inference is generally more computationally challenging.

- A central problem in Bayesian inference is approximating an intractable posterior distribution p and estimating intractable expectations E_p [f(X)] = ∫ f(x)p(x) dx with respect to p.
- Bayesian inference uses an entire distribution over the parameters for estimation.
- For example, we can compute:
 - posterior mean and covariance
 - quantiles
 - marginal distributions
- However, Bayesian inference is generally more computationally challenging.
- The goal is to do inference accurately and efficiently.

 Markov Chain Monte Carlo (MCMC) methods are a large class of sampling-based algorithms.

$\mathsf{MCMC} \text{ and } \mathsf{VI}$

• Markov Chain Monte Carlo (MCMC) methods are a large class of sampling-based algorithms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• samples x_1, x_2, \ldots represent p

$\mathsf{MCMC} \text{ and } \mathsf{VI}$

- Markov Chain Monte Carlo (MCMC) methods are a large class of sampling-based algorithms.
 - samples x_1, x_2, \ldots represent p
 - the sample average $\frac{1}{M} \sum_{i=1}^{M} f(x_i)$ is an asymptotically exact estimator of $\mathbb{E}_p[f(X)]$ as $M \to \infty$.

$\mathsf{MCMC} \text{ and } \mathsf{VI}$

- Markov Chain Monte Carlo (MCMC) methods are a large class of sampling-based algorithms.
 - samples x_1, x_2, \ldots represent p
 - the sample average $\frac{1}{M} \sum_{i=1}^{M} f(x_i)$ is an asymptotically exact estimator of $\mathbb{E}_p[f(X)]$ as $M \to \infty$.

• Variational inference (VI) methods recast the inference problem as a parametric optimization problem.

MCMC and VI

- Markov Chain Monte Carlo (MCMC) methods are a large class of sampling-based algorithms.
 - samples x_1, x_2, \ldots represent p
 - the sample average $\frac{1}{M} \sum_{i=1}^{M} f(x_i)$ is an asymptotically exact estimator of $\mathbb{E}_p[f(X)]$ as $M \to \infty$.
- Variational inference (VI) methods recast the inference problem as a parametric optimization problem.
- MCMC methods are asymptotically exact but can be slow; VI methods can be fast but are generally biased.

• Particle-based Variational Inference methods (ParVIs) are nonparametric variational inference methods that optimize a set of particles $\{x^{(1)}, x^{(2)}, \ldots, x^{(M)}\}$ to best represent p.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

- Particle-based Variational Inference methods (ParVIs) are nonparametric variational inference methods that optimize a set of particles $\{x^{(1)}, x^{(2)}, \ldots, x^{(M)}\}$ to best represent p.
- Stein Variational Gradient Descent (SVGD)

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} + \frac{\epsilon}{M} \sum_{j=1}^M \left(K(x_k^{(i)}, x_k^{(j)}) \nabla_{x_k^{(j)}} \log p(x_k^{(j)}) + \nabla_{x_k^{(j)}} K(x_k^{(i)}, x_k^{(j)}) \right)$$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

- Particle-based Variational Inference methods (ParVIs) are nonparametric variational inference methods that optimize a set of particles {x⁽¹⁾, x⁽²⁾,..., x^(M)} to best represent p.
- Stein Variational Gradient Descent (SVGD)

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} + \frac{\epsilon}{M} \sum_{j=1}^M \left(K(x_k^{(i)}, x_k^{(j)}) \nabla_{x_k^{(j)}} \log p(x_k^{(j)}) + \nabla_{x_k^{(j)}} K(x_k^{(i)}, x_k^{(j)}) \right)$$

Blob, GFSD, GFSF

- Particle-based Variational Inference methods (ParVIs) are nonparametric variational inference methods that optimize a set of particles $\{x^{(1)}, x^{(2)}, \ldots, x^{(M)}\}$ to best represent p.
- Stein Variational Gradient Descent (SVGD)

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} + \frac{\epsilon}{M} \sum_{j=1}^M \left(K(x_k^{(i)}, x_k^{(j)}) \nabla_{x_k^{(j)}} \log p(x_k^{(j)}) + \nabla_{x_k^{(j)}} K(x_k^{(i)}, x_k^{(j)}) \right)$$

- Blob, GFSD, GFSF
- An important question for ParVIs is the quality of the posterior inference for a given posterior distribution *p*.

- Particle-based Variational Inference methods (ParVIs) are nonparametric variational inference methods that optimize a set of particles {x⁽¹⁾, x⁽²⁾,..., x^(M)} to best represent p.
- Stein Variational Gradient Descent (SVGD)

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} + \frac{\epsilon}{M} \sum_{j=1}^M \left(K(x_k^{(i)}, x_k^{(j)}) \nabla_{x_k^{(j)}} \log p(x_k^{(j)}) + \nabla_{x_k^{(j)}} K(x_k^{(i)}, x_k^{(j)}) \right)$$

- Blob, GFSD, GFSF
- An important question for ParVIs is the quality of the posterior inference for a given posterior distribution p.
 - How well do the particles $\{x^{(1)}, x^{(2)}, \ldots, x^{(M)}\}$ represent p in practice?

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

- Particle-based Variational Inference methods (ParVIs) are nonparametric variational inference methods that optimize a set of particles $\{x^{(1)}, x^{(2)}, \ldots, x^{(M)}\}$ to best represent p.
- Stein Variational Gradient Descent (SVGD)

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} + \frac{\epsilon}{M} \sum_{j=1}^M \left(K(x_k^{(i)}, x_k^{(j)}) \nabla_{x_k^{(j)}} \log p(x_k^{(j)}) + \nabla_{x_k^{(j)}} K(x_k^{(i)}, x_k^{(j)}) \right)$$

- Blob, GFSD, GFSF
- An important question for ParVIs is the quality of the posterior inference for a given posterior distribution p.
 - ▶ How well do the particles $\{x^{(1)}, x^{(2)}, \dots, x^{(M)}\}$ represent p in practice?
 - How accurate is the estimator $\frac{1}{M} \sum_{i=1}^{M} f(x^{(i)})$ for $\mathbb{E}_p[f(X)]$ in practice?

• For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.

• We leverage ideas from large-scale optimization.

• For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.

- We leverage ideas from large-scale optimization.
- Stochastic gradient descent (SGD)

• For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.

- We leverage ideas from large-scale optimization.
- Stochastic gradient descent (SGD)
 - can reach an approximate solution relatively quickly

• For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.

- We leverage ideas from large-scale optimization.
- Stochastic gradient descent (SGD)
 - can reach an approximate solution relatively quickly
 - but has slow asymptotic convergence

For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.

- We leverage ideas from large-scale optimization.
- Stochastic gradient descent (SGD)
 - can reach an approximate solution relatively quickly
 - but has slow asymptotic convergence
- Variance reduction methods for SGD, like SVRG

- For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.
- We leverage ideas from large-scale optimization.
- Stochastic gradient descent (SGD)
 - can reach an approximate solution relatively quickly
 - but has slow asymptotic convergence
- Variance reduction methods for SGD, like SVRG
 - accelerate convergence for strongly convex problems when highly accurate solutions are needed

- For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.
- We leverage ideas from large-scale optimization.
- Stochastic gradient descent (SGD)
 - can reach an approximate solution relatively quickly
 - but has slow asymptotic convergence
- Variance reduction methods for SGD, like SVRG
 - accelerate convergence for strongly convex problems when highly accurate solutions are needed

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• Quasi-Newton methods, like L-BFGS

- For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.
- We leverage ideas from large-scale optimization.
- Stochastic gradient descent (SGD)
 - can reach an approximate solution relatively quickly
 - but has slow asymptotic convergence
- Variance reduction methods for SGD, like SVRG
 - accelerate convergence for strongly convex problems when highly accurate solutions are needed
- Quasi-Newton methods, like L-BFGS
 - speed up convergence for ill-conditioned problems by approximating the inverse Hessian

- For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.
- We leverage ideas from large-scale optimization.
- Stochastic gradient descent (SGD)
 - can reach an approximate solution relatively quickly
 - but has slow asymptotic convergence
- Variance reduction methods for SGD, like SVRG
 - accelerate convergence for strongly convex problems when highly accurate solutions are needed
- Quasi-Newton methods, like L-BFGS
 - speed up convergence for ill-conditioned problems by approximating the inverse Hessian

but traditionally are full-dataset methods

- For accurate posterior inference, highly accurate solutions to the ParVI optimization problem are needed.
- We leverage ideas from large-scale optimization.
- Stochastic gradient descent (SGD)
 - can reach an approximate solution relatively quickly
 - but has slow asymptotic convergence
- Variance reduction methods for SGD, like SVRG
 - accelerate convergence for strongly convex problems when highly accurate solutions are needed
- Quasi-Newton methods, like L-BFGS
 - speed up convergence for ill-conditioned problems by approximating the inverse Hessian
 - but traditionally are full-dataset methods
- Combining stochastic quasi-Newton methods and variance reduction

Wasserstein optimization perspective of ParVIs

• However, ParVIs are not optimizing some function on the particle space, so directly applying the optimization techniques to the ParVI update rule of each particle is not technically sound.

Wasserstein optimization perspective of ParVIs

- However, ParVIs are not optimizing some function on the particle space, so directly applying the optimization techniques to the ParVI update rule of each particle is not technically sound.
- Fortunately, ParVIs have been understood as minimizing the KL divergence $\operatorname{KL}_p(q) := \mathbb{E}_q[\log q/p]$ between the variational distribution q and the target distribution p on a general distribution space, the Wasserstein space.

Wasserstein optimization perspective of ParVIs

- However, ParVIs are not optimizing some function on the particle space, so directly applying the optimization techniques to the ParVI update rule of each particle is not technically sound.
- Fortunately, ParVIs have been understood as minimizing the KL divergence $\operatorname{KL}_p(q) := \mathbb{E}_q[\log q/p]$ between the variational distribution q and the target distribution p on a general distribution space, the Wasserstein space.
- The Wasserstein space has a Riemannian structure, so we can leverage Riemannian optimization techniques.

ParVIs on the Wasserstein space

• ParVIs can be formulated as optimizing $KL_p(q)$ on the Wasserstein space by simulating the gradient flow of KL_p .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ParVIs on the Wasserstein space

- ParVIs can be formulated as optimizing $KL_p(q)$ on the Wasserstein space by simulating the gradient flow of KL_p .
- With the Riemannian structure of the Wasserstein space, the gradient can be expressed as:

 $\operatorname{grad} \operatorname{KL}_p(q) = \nabla \log(q/p).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
ParVIs on the Wasserstein space

- ParVIs can be formulated as optimizing $KL_p(q)$ on the Wasserstein space by simulating the gradient flow of KL_p .
- With the Riemannian structure of the Wasserstein space, the gradient can be expressed as:

$$\operatorname{grad} \operatorname{KL}_p(q) = \nabla \log(q/p).$$

• Let $\{x^{(i)}\}_{i=1}^{M}$ be a set of particles of q. The gradient flow simulation can be carried out by successively updating particles using a particle-based numerical approximation of $\operatorname{grad} \operatorname{KL}_p(q)$:

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} - \epsilon \hat{G}(\{x_k^{(j)}\}_j)^{(i)}$$

• Let $p_0(x)$ be the prior and $p_n(x) := p(D_n|x)$ be the likelihood term for data point D_n . The KL divergence can be decomposed as the sum:

$$\mathrm{KL}_p(q) = \mathbb{E}_q[\log q] - \mathbb{E}_q[\log p_0] - \sum_{n=1}^N \mathbb{E}_q[\log p_n] + \log Z$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Let $p_0(x)$ be the prior and $p_n(x) := p(D_n|x)$ be the likelihood term for data point D_n . The KL divergence can be decomposed as the sum:

$$\mathrm{KL}_p(q) = \mathbb{E}_q[\log q] - \mathbb{E}_q[\log p_0] - \sum_{n=1}^N \mathbb{E}_q[\log p_n] + \log Z$$

3 7

The gradient over the full dataset is:

$$-\operatorname{grad} \operatorname{KL}_{p}(q) = \underbrace{\nabla \log p_{0} - \nabla \log q}^{U(q)} + \underbrace{\sum_{n=1}^{N} \underbrace{\nabla \log p_{n}}_{V_{n}(q)}}_{V_{n}(q)}$$

• Let $p_0(x)$ be the prior and $p_n(x) := p(D_n|x)$ be the likelihood term for data point D_n . The KL divergence can be decomposed as the sum:

$$\mathrm{KL}_p(q) = \mathbb{E}_q[\log q] - \mathbb{E}_q[\log p_0] - \sum_{n=1}^N \mathbb{E}_q[\log p_n] + \log Z$$

A 7

The gradient over the full dataset is:

$$-\operatorname{grad} \operatorname{KL}_p(q) = \underbrace{\nabla \log p_0 - \nabla \log q}_{U(q)} + \underbrace{\sum_{n=1}^{N} \underbrace{\nabla \log p_n}_{V_n(q)}}_{V_n(q)}$$

• Let $\hat{U}(\{x^{(j)}\}_j)^{(i)}$ and $\hat{V}_n(\{x^{(j)}\}_j)^{(i)}$ be the particle-based numerical approximations of U(q) and $V_n(q)$ respectively.

• Let $p_0(x)$ be the prior and $p_n(x) := p(D_n|x)$ be the likelihood term for data point D_n . The KL divergence can be decomposed as the sum:

$$\mathrm{KL}_p(q) = \mathbb{E}_q[\log q] - \mathbb{E}_q[\log p_0] - \sum_{n=1}^N \mathbb{E}_q[\log p_n] + \log Z$$

A 7

• The gradient over the full dataset is:

$$-\operatorname{grad} \operatorname{KL}_p(q) = \underbrace{\nabla \log p_0 - \nabla \log q}_{V(q)} + \underbrace{\sum_{n=1}^{N} \underbrace{\nabla \log p_n}_{V_n(q)}}_{V_n(q)}$$

- Let $\hat{U}(\{x^{(j)}\}_j)^{(i)}$ and $\hat{V}_n(\{x^{(j)}\}_j)^{(i)}$ be the particle-based numerical approximations of U(q) and $V_n(q)$ respectively.
- The SGD update step is first sample a data point $n_k \in \{1, \cdots, N\}$ uniformly at random and then update

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} + \varepsilon \left(\hat{U}(\{x_k^{(j)}\}_j)^{(i)} + N\hat{V}_{n_k}(\{x_k^{(j)}\}_j)^{(i)} \right)$$

• We want to derive variance reduction and quasi-Newton methods for ParVIs based on Riemannian variance reduction and quasi-Newton algorithms.

- We want to derive variance reduction and quasi-Newton methods for ParVIs based on Riemannian variance reduction and quasi-Newton algorithms.
- Riemannian variance reduction and quasi-Newton algorithms require geometric structures of the Riemannian manifold like (inverse) exponential map and parallel transport.

- We want to derive variance reduction and quasi-Newton methods for ParVIs based on Riemannian variance reduction and quasi-Newton algorithms.
- Riemannian variance reduction and quasi-Newton algorithms require geometric structures of the Riemannian manifold like (inverse) exponential map and parallel transport.
 - e.g., for transporting a cached direction at a snapshot position to the current position

- We want to derive variance reduction and quasi-Newton methods for ParVIs based on Riemannian variance reduction and quasi-Newton algorithms.
- Riemannian variance reduction and quasi-Newton algorithms require geometric structures of the Riemannian manifold like (inverse) exponential map and parallel transport.
 - e.g., for transporting a cached direction at a snapshot position to the current position
- We derive particle realizations of these operations under the pairwise-close approximation, which are stable and do not increase the order of computation cost.

- We want to derive variance reduction and quasi-Newton methods for ParVIs based on Riemannian variance reduction and quasi-Newton algorithms.
- Riemannian variance reduction and quasi-Newton algorithms require geometric structures of the Riemannian manifold like (inverse) exponential map and parallel transport.
 - e.g., for transporting a cached direction at a snapshot position to the current position
- We derive particle realizations of these operations under the pairwise-close approximation, which are stable and do not increase the order of computation cost.
- Note that the algorithms we present in this talk are simplified under the pairwise-close approximation.

• Based on Riemannian SVRG, we can derive SVRG for ParVIs.

• Based on Riemannian SVRG, we can derive SVRG for ParVIs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• At the start of every outer loop,

- Based on Riemannian SVRG, we can derive SVRG for ParVIs.
- At the start of every outer loop,
 - \blacktriangleright the positions of the particles are recorded as a reference snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^M,$ and

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

- Based on Riemannian SVRG, we can derive SVRG for ParVIs.
- At the start of every outer loop,
 - ▶ the positions of the particles are recorded as a reference snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^M$, and
 - the corresponding full-summation over the entire dataset is computed and stored: $\tilde{V}^{(i)} \leftarrow \sum_{n=1}^{N} \hat{V}_n(\{\tilde{x}^{(j)}\}_j)^{(i)}$.

- Based on Riemannian SVRG, we can derive SVRG for ParVIs.
- At the start of every outer loop,
 - \blacktriangleright the positions of the particles are recorded as a reference snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^M,$ and
 - the corresponding full-summation over the entire dataset is computed and stored: $\tilde{V}^{(i)} \leftarrow \sum_{n=1}^{N} \hat{V}_n(\{\tilde{x}^{(j)}\}_j)^{(i)}$.

• In each subsequent iteration k, for a random data point n_k ,

- Based on Riemannian SVRG, we can derive SVRG for ParVIs.
- At the start of every outer loop,
 - ▶ the positions of the particles are recorded as a reference snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^{M}$, and
 - the corresponding full-summation over the entire dataset is computed and stored: $\tilde{V}^{(i)} \leftarrow \sum_{n=1}^{N} \hat{V}_n(\{\tilde{x}^{(j)}\}_j)^{(i)}$.
- In each subsequent iteration k, for a random data point n_k ,
 - ▶ the stochastic gradient at the current position $\{x_k^{(i)}\}_{i=1}^M$ is combined with the stochastic gradient at the snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^M$ and the stored full gradient $\{\tilde{V}^{(i)}\}_{i=1}^M$ to get the variance-reduced gradient.

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} + \varepsilon \quad \left(\hat{U}(\{x_k^{(j)}\}_j)^{(i)} + N\hat{V}_{n_k}(\{x_k^{(j)}\}_j)^{(i)} - \left(\left\{ N\hat{V}_{n_k}(\{\tilde{x}^{(j')}\}_{j'})^{(j)} - \tilde{V}^{(j)} \right\}_j \right)^{(i)} \right)$$

 In addition to variance reduction, we can further incorporate quasi-Newton preconditioning techniques based on Riemannian SQN-VR.

 In addition to variance reduction, we can further incorporate quasi-Newton preconditioning techniques based on Riemannian SQN-VR.

• At the start of every outer loop,

- In addition to variance reduction, we can further incorporate quasi-Newton preconditioning techniques based on Riemannian SQN-VR.
- At the start of every outer loop,
 - ▶ as in SVRG, the snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^M$ and the corresponding full-summation $\{\tilde{V}^{(i)}\}_{i=1}^M$ are stored, and

- In addition to variance reduction, we can further incorporate quasi-Newton preconditioning techniques based on Riemannian SQN-VR.
- At the start of every outer loop,
 - ▶ as in SVRG, the snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^{M}$ and the corresponding full-summation $\{\tilde{V}^{(i)}\}_{i=1}^{M}$ are stored, and
 - the L-BFGS curvature pairs are updated, using the difference between the current and previous snapshot position and the difference between their corresponding full-summations.

- In addition to variance reduction, we can further incorporate quasi-Newton preconditioning techniques based on Riemannian SQN-VR.
- At the start of every outer loop,
 - ▶ as in SVRG, the snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^{M}$ and the corresponding full-summation $\{\tilde{V}^{(i)}\}_{i=1}^{M}$ are stored, and
 - the L-BFGS curvature pairs are updated, using the difference between the current and previous snapshot position and the difference between their corresponding full-summations.

• In each subsequent iteration k,

- In addition to variance reduction, we can further incorporate quasi-Newton preconditioning techniques based on Riemannian SQN-VR.
- At the start of every outer loop,
 - ▶ as in SVRG, the snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^{M}$ and the corresponding full-summation $\{\tilde{V}^{(i)}\}_{i=1}^{M}$ are stored, and
 - the L-BFGS curvature pairs are updated, using the difference between the current and previous snapshot position and the difference between their corresponding full-summations.

- In each subsequent iteration k,
 - first compute the variance-reduced gradient as in SVRG, and

- In addition to variance reduction, we can further incorporate quasi-Newton preconditioning techniques based on Riemannian SQN-VR.
- At the start of every outer loop,
 - ▶ as in SVRG, the snapshot position $\{\tilde{x}^{(i)}\}_{i=1}^{M}$ and the corresponding full-summation $\{\tilde{V}^{(i)}\}_{i=1}^{M}$ are stored, and
 - the L-BFGS curvature pairs are updated, using the difference between the current and previous snapshot position and the difference between their corresponding full-summations.
- In each subsequent iteration k,
 - first compute the variance-reduced gradient as in SVRG, and
 - then apply a quasi-Newton update using the L-BFGS two-loop recursion with the variance reduced gradient.

• We run experiments on Bayesian linear regression and logistic regression datasets with a batch size of 10.

- We run experiments on Bayesian linear regression and logistic regression datasets with a batch size of 10.
- For the choice of ParVI, we use SVGD with 100 particles and the linear kernel.

- We run experiments on Bayesian linear regression and logistic regression datasets with a batch size of 10.
- For the choice of ParVI, we use SVGD with 100 particles and the linear kernel.
- We compare the following optimization algorithms: SGD, AdaGrad with momentum, SVRG, SPIDER, and SQN-VR.

- We run experiments on Bayesian linear regression and logistic regression datasets with a batch size of 10.
- For the choice of ParVI, we use SVGD with 100 particles and the linear kernel.
- We compare the following optimization algorithms: SGD, AdaGrad with momentum, SVRG, SPIDER, and SQN-VR.

Evaluation:

- We run experiments on Bayesian linear regression and logistic regression datasets with a batch size of 10.
- For the choice of ParVI, we use SVGD with 100 particles and the linear kernel.
- We compare the following optimization algorithms: SGD, AdaGrad with momentum, SVRG, SPIDER, and SQN-VR.
- Evaluation:
 - ▶ We obtain a set of 40,000 ground-truth samples using MCMC.

- We run experiments on Bayesian linear regression and logistic regression datasets with a batch size of 10.
- For the choice of ParVI, we use SVGD with 100 particles and the linear kernel.
- We compare the following optimization algorithms: SGD, AdaGrad with momentum, SVRG, SPIDER, and SQN-VR.
- Evaluation:
 - ▶ We obtain a set of 40,000 ground-truth samples using MCMC.
 - Maximum Mean Discrepancy (MMD) between the 100 ParVI particles and the 40,000 MCMC samples.

- We run experiments on Bayesian linear regression and logistic regression datasets with a batch size of 10.
- For the choice of ParVI, we use SVGD with 100 particles and the linear kernel.
- We compare the following optimization algorithms: SGD, AdaGrad with momentum, SVRG, SPIDER, and SQN-VR.
- Evaluation:
 - ▶ We obtain a set of 40,000 ground-truth samples using MCMC.
 - Maximum Mean Discrepancy (MMD) between the 100 ParVI particles and the 40,000 MCMC samples.

2 Mean-squared error for estimating posterior mean.

- We run experiments on Bayesian linear regression and logistic regression datasets with a batch size of 10.
- For the choice of ParVI, we use SVGD with 100 particles and the linear kernel.
- We compare the following optimization algorithms: SGD, AdaGrad with momentum, SVRG, SPIDER, and SQN-VR.
- Evaluation:
 - ▶ We obtain a set of 40,000 ground-truth samples using MCMC.
 - Maximum Mean Discrepancy (MMD) between the 100 ParVI particles and the 40,000 MCMC samples.

- Mean-squared error for estimating posterior mean.
- Mean-squared error for estimating posterior covariance.

- We run experiments on Bayesian linear regression and logistic regression datasets with a batch size of 10.
- For the choice of ParVI, we use SVGD with 100 particles and the linear kernel.
- We compare the following optimization algorithms: SGD, AdaGrad with momentum, SVRG, SPIDER, and SQN-VR.
- Evaluation:
 - ▶ We obtain a set of 40,000 ground-truth samples using MCMC.
 - Maximum Mean Discrepancy (MMD) between the 100 ParVI particles and the 40,000 MCMC samples.
 - Ø Mean-squared error for estimating posterior mean.
 - Mean-squared error for estimating posterior covariance.
 - Kernel Stein Discrepancy (KSD) for the 100 ParVI particles with respect to the posterior distribution.

Experimental results for Bayesian linear regression

(日)

ж

Experimental results for Bayesian logistic regression

æ

• We propose a variance reduction and quasi-Newton preconditioning framework for ParVIs.

Summary

• We propose a variance reduction and quasi-Newton preconditioning framework for ParVIs.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Our methods are derived from the Wasserstein optimization perspective of ParVIs and Riemannian optimization algorithms.
Summary

- We propose a variance reduction and quasi-Newton preconditioning framework for ParVIs.
- Our methods are derived from the Wasserstein optimization perspective of ParVIs and Riemannian optimization algorithms.
- Our experimental results on Bayesian linear regression and logistic regression show that our new methods result in a set of particles with significantly better sample quality.