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What is covered

What is Statistical mechanics developed for? What is its basic
principle? What does it achieve? What tools/techniques is employed?

What is the origin of some concepts in machine learning? Entropy,
Boltzmann distribution (canonical distribution), (Helmholtz) free
energy, etc.
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Introduction

What is statistical mechanics

On the study of statistical properties of a macroscopic system in
equilibrium that consists of a huge number of particles:

Thermodynamics: based on the four thermodynamic laws summarized
from experiments. Week dependence on microscopic laws of motion.
Studies the Relations of thermodynamic quantities (e.g.
PV = NkBT , E = 3

2NkBT )

(Equilibrium) statistical mechanics: based on statistics, conclusions
from microscopic laws of motion, and ergodic hypothesis. Studies the
ensembles (an ensemble is the distribution over microstates of a
specific macroscopic system). Relations of thermodynamic quantities
in thermodynamics can be derived by taking the large system limit in
statistical mechanics.
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Introduction

The basic principle of statistical mechanics

The basic principle of statistical mechanics: the probability density over
microstates of an isolated system in equilibrium is constant.
The principle is supported by:

A microstate of an isolated (classical) system comprising N particles:
the most detailed description of the system at some instant:
s = (Q,P ) = (q1x, q1y, q1z, q2x, . . . , qNz, p1x, p1y, p1z, . . . , pNz) is a
point in phase-space R6N . This description arises from classical
mechanics.

The time evolution of a microstate is governed by Hamilton’s
equation: q̇ = ∇pH(s), ṗ = −∇qH(s), where H(s) is the
Hamiltonian, a function of a microstate s, and usually the total
energy of the system.

Hamiltonian is conserved while evoluting:
dH(s)/dt = ∇qH · q̇ +∇pH · ṗ = ∇qH · ∇pH −∇pH · ∇qH = 0.

Liouville’s theorem: dρ/dt = 0.
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Introduction

The basic principle of statistical mechanics

Ergodic hypothesis (first proposed by L. E. Boltzmann): informally,
from any initial microstate, the time evolution will lead the system to
pass every other microstates of the same energy.
For some systems like a three-body system, although chaotic, but not
ergodic. For some systems like the hard sphere gas, ergodicity can be
proven. We believe ergodicity holds for most systems with large
numbers of interacting particles.

For the equilibrium distribution over microstates, starting with state
s(0), for any other microstate A, there is a time t s.t. s(t) = A
(ergodicity), and ρ(s(0), 0) = ρ(s(t), t) = ρ(A, t) (Liouville’s
theorem), ρ(A, t) = ρ(A, 0) (equilibrium), so ρ(A, 0) = ρ(s(0), 0).
The equilibrium distribution is constant over microstates for an
isolated system.
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The Microcanonical Ensemble

The microcanonical ensemble

The distribution over microstates of an isolated system (fixed energy,
volume and particle number).

According to the basic principle, the density ρ(s) ∝ δ(E −H(s)).
Define Ω(E) =

´
δ(E −H(s))ds = d

dE

´
H(s)≤E ds (the volume of

constant-energy region in the phase space / the number of
microstates of constant energy), then ρ(s) = 1

Ω(E)δ(E −H(s)).
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The Microcanonical Ensemble

Relation between ρ(s) and ρ(E)

From the basic principle, ρ(s) = f(H(s)).

For a general function g(E), we have

ˆ
g(H(s))ds =

ˆ (ˆ
g(E)δ(E −H(s))dE

)
ds

=

¨
g(E)δ(E −H(s))dsdE =

ˆ
g(E)Ω(E)dE. (1)

Apply the above conclusion:

ρ(E) =

ˆ
ρ(s, E)ds =

ˆ
f(H(s))δ(E −H(s))ds

Eqn. (1)
========

ˆ
f(y)δ(E − y)Ω(y)dy = f(E)Ω(E). (2)
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The Microcanonical Ensemble

Introducing temperature and equilibrium entropy

Consider an isolated system consisting of two subsystems that share the
total energy E (in heat contact). What is the energy of each subsystem
when in equilibrium?
Let s1 and s2 be an microstate of each subsystem. The whole system is a
microcanonical ensemble: ρ(s1, s2) = 1

Ω(E)δ(E −H1(s1)−H2(s2)). So

ρ(s1) =

ˆ
ρ(s1, s2)ds2 =

1

Ω(E)

ˆ
δ(E −H1(s1)−H2(s2))ds2

Eqn. (1)
========

1

Ω(E)

ˆ
δ(E −H1(s1)− E2)Ω2(E2)dE2

=
1

Ω(E)
Ω2(E −H1(s1)), (3)

and from Eqn. (2) ρ(E1) = 1
Ω(E)Ω1(E1)Ω2(E − E1). The mode of the

energy distribution should satisfy:

0 =
dρ(E1)

dE1
=

1

Ω(E)

(dΩ1(E1)

dE1
Ω2(E2)− Ω1(E1)

dΩ2(E2)

dE2

)
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The Microcanonical Ensemble

Introducing temperature and equilibrium entropy

It can be shown that ρ(E1) is very sharp so at equilibrium E1 stays at the
mode:

d log Ω1(E1)

dE1
=

d log Ω2(E2)

dE2
.

If d log Ω1(E1)
dE1

< d log Ω2(E2)
dE2

, then dρ(E1)
dE1

< 0, so E1 tends to decrease. So

the subsystem with a smaller d log Ω(E)
dE tends to give out its energy. We

know that the two systems have the same temperature in equilibrium,and
a higher temperature indicates the tend to give out energy, so we define
the temperature T as

1

T
=

d log Ω(E)

dE
.

Define the equilibrium entropy S(E, V,N) = kB log Ω(E, V,N) and the
temperature is formally defined as

1

T
=

(
∂S

∂E

)
V,N

.
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The Microcanonical Ensemble

An intuitive interpretation of ρ(E1) to be a very sharp
distribution

Expand ρ(E1) around its mode E∗
1 :

ρ(E1) ∝ Ω1(E1)Ω2(E − E1) = exp
(
S1(E1)/kB + S2(E − E1)/kB

)
= exp

[(
S1(E∗

1 ) +
1

2

∂2S1

∂E2
1

(E1 − E∗
1 )2 + S2(E∗

2 ) +
1

2

∂2S2

∂E2
2

(E1 − E∗
1 )2
)
/kB

]
∝ exp[−(E1 − E∗

1 )2/(2σE)],

where σ2
E = −kB/(∂2S1/∂E

2
1 + ∂2S2/∂E

2
2). E and S are extensive quantities

(scale linearly with system size N), so ∂2S/∂E2 ∝ 1/N and the relative

fluctuation σE/E
∗
1 ∝
√
N/N = 1/

√
N vanishes in the limit N →∞.
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The Microcanonical Ensemble

The history of entropy

Entropy in thermodynamics: Entropy is first proposed in
thermodynamics by Rudolf Clausius. The fact that

¸
C
δQ
T = 0 for any

reversible loop C indicating that there exists a state function S and
the difference for two states A and B is S(B)− S(A) =

´
l
δQ
T for any

reversible path l from A to B.

Entropy in equilibrium statistical mechanics: Namely the above
definition S = kB log Ω, which is proposed by Planck based on the
idea of Boltzmann. For thermodynamic entropy, dS = δQ

T . For

Boltzmann’s entropy, T =
(
∂E
∂S

)
V,N

= δQ
dS , so dS = δQ

T also holds.
That is the relation between the two definitions.
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The Microcanonical Ensemble

The history of entropy

Shannon’s entropy in information theory:
S = −kS

∑
i pi log pi = −

´
ρ(x) log ρ(x)dx. Boltzmann’s entropy:

S = kB log Ω = −kB log(1/Ω) = −kB
∑Ω

i=1(1/Ω) log(1/Ω).
Shannon’s entropy is the only continuous function of p = (p1, . . . , pN )
that satisfies: 1)S( 1

N , . . . ,
1
N ) ≥ S(p1, . . . , pN ), and the equality holds

if and only if p is uniform; 2) S(p1, . . . , pN−1, 0) = S(p1, . . . , pN−1);
3) for a joint distribution over (x, y), Ey[S(x|y)] = S(x, y)− S(y).
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The Canonical Ensemble

The Canonical Ensemble
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The Canonical Ensemble

The canonical ensemble

The distribution over microstates of a system with fixed temperature,
volume and particle number.
The only theoretical way to implement such a system is to let it in
contact with another system large enough to maintain temperature
while exchanging energy with the concerned system. The large
enough system is called a heat bath (thermal energy reservoir).
Deriving the distribution over microstates: denote the concerned
system as 1 and the heat bath as 2. Then according to Eqn. (3),
ρ(s1) ∝ Ω2(E −H1(s1)). According to the large heat bath
assumption, ∂S2/∂E2 = 1/T is fixed. So ∂ log Ω2/∂E2 = 1/kBT ,
solved as Ω2(E2) ∝ exp(E2/kBT ). So ρ(s1) ∝ exp(−H1(s1)/kBT ),
and

ρ(s) =
1

Z(β)
exp(−βH(s)), (4)

where β = 1/kBT and Z(β) is the partition function. This is the
Boltzmann distribution, or canonical distribution.
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The Canonical Ensemble

The canonical ensemble

The Boltzmann distribution is in the exponential family with sufficient
statistics H(s) and natural parameter −β. So E[E] = −∂ logZ/∂β.
Entropy S = −

´
ρ(s) log ρ(s)ds = E[E]/T + kB logZ.

Define the Helmholtz free energy A = −kBT logZ = E[E]− TS,
then S = −∂A

∂T . Generally thermodynamic properties of a canonical
ensemble are determined by the Helmholtz free energy through its
derivatives.
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Free Energies

Free energies

The free energy of a specific system determines thermodynamic
properties of the system.

The free energy of a specific system is the part of internal energy that
can be converted into useful work.
E.g. The Helmholtz free energy: A = E[E]− TS is the total internal
energy excluding the heat that has to be transmitted into a cold bath
when doing work, thus the available work.

A free energy F (x) integrates out other degrees of freedom
(variables). exp(−F (x)/kBT ) is the volume of the region in phase
space with constant x.
E.g. For the Helmholtz free energy, exp(−A(T )/kBT ) = Z(T ) is the
volume of constant-temperature region in phase space. It is the part
that region with constant given temperature T takes in the phase
space.
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Free Energies

Free energies

Free energies are Legendre transforms of energy. The Legendre
transform of a convex function f(x) is f∗(p) = minx f(x)− xp. It
can be extended to Fenchel transform for convex conjugate. For
differentiable f(x), f∗(p) = (f(x)− xp)p=f ′(x). The Helmholtz free
energy A(T ) is the Legendre transform of E(S):
A(T ) = (E(S)− ST ) since T = ∂E/∂S.
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Free Energies

Thanks!
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