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Generative Model

ChatGPT DALL-E 3

I JUST FEEL SO
EMPTY INSIDE.

‘@; how to merge dictionaries in python?

0 X

@ To merge two dictionaries in Python, you can use the “update()"

» DALLES3

An illustration of an avocado sitting in a
therapist's chair, saying 'l just feel so empty
inside’ with a pit-sized hole in its center. The
therapist, a spoon, scribbles notes.

https://medium.com/@tanyamarleytsui/coding-with-chatgpt-b50ab3fcb45f https://openai.com/index/dall-e-3/



Generative Model

Sora

L —

Prompt: A stylish woman walks down a Tokyo street filled with warm glowing neon and animated
city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black
purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is
damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

https://openai.com/index/sora/



Generative Model

Distributional Graphormer
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Tyk2 binding with  °

NH
N@N)D%
HCl bandgap-guided generation

of carbon structures

acyl group on a stepped

Tilr alloy surface
https://distributionalgraphormer.github.io/



Generative Model

* Features:
e “Output” is high dimensional.
e Often there is no “input” for producing an “output”.
* The “output” often shows randomness.



Generative Model: Overview

* Generative Models: Models that define p(data).
* By computing the p.d.f/p.m.f of p(data): data generation can be done in principle.

* By specifying a generating process of data: the distribution p(data) is implicitly
defined.

Unsupervised:

(D, ) = { , ” }~ b(0)

Supervised:

{(xW),yW), ., (M), yN))} = {(, "2"), e, (, "7")}~ p(x,y)

Discriminative: p(y|x). p(x|y): “conditional generation”
(since dim. of x is high)



Generative Model: Overview

* What can generative models do:

1. Generate new data samples.

Generation from p(x) [DN21]



Generative Model: Overview

* What can generative models do:

1. Generate new data samples.

‘@g how to merge dictionaries in python?

@ To merge two dictionaries in Python, you can use the “update()®

p» DALLE3

An illustration of an avocado sitting in a
therapist's chair, saying 'l just feel so empty
inside' with a pit-sized hole in its center. The
therapist, a spoon, scribbles notes.

’ Q‘/\\\ 1

.2

Conditional Generation p(x|y)



Generative Model: Overview

the sea. the galaxy

* What can generative models do:

2. Infer unobserved variables from joint distribution.
1 1-“4‘.‘@_ ‘ ,

Living room with — -
ocean views (b) g(xo|yo) text to image generation

(d) g(xg) unconditional

@ image generation

Christmas santa Teddy bear with

smartphone
- }j;ﬁgﬁtlydaﬁer sunsl'ez} t
HPR in | ? acienda snows in forest »
-- Query p(R | G = 1) from p(S, R, G) Guizhou, China

* Colorful Abstract Animal
image

(e) q(yo) unconditional
text generation

(¢) q(¥o|xp) image to text generation

Generation from p(x|y), p(y|x), p(x), p(y) [BNX+23]



Generative Model: Overview

 What can generative models do:

2. Infer unobserved variables from joint distribution.

Supervised Learning: query p(y|x) from p(x, y). “ENGINES” speed product introduced
. toD] “ROYAL” britain queen Sir
Z-1opICS ' «ARMY™ commander forces war

analysis space program

{bird, mammal}

ATTY# EXaoree sai

= oanEN! (e 1
x;: doc 1 |5 s aaf === =" -| y1: science & tech |
has beak? can fly? has fur? has four legs? Xy doc 2 — '| Yy pO“tiCS |
Naive Bayes

sy pervised LDA [MBO08]



Generative Model: Overview

 What can generative models do:
3. Density estimation p(x).
* Uncertainty estimate.

 Anomaly detection.

5] X x_ x

- X X X

S X

§ | X );xx’&xxx

' x X X o
X X

[Ritchie Ng]



https://www.ritchieng.com/machine-learning-anomaly-detection/

Generative Model: Overview

* What can generative models do:

4. Representation learning: semantic and concise (via latent variable z).

(e) Young
_ Manipulated/interpolated generation [DFD+18]
Z (semantic regions)



Generative Model: Benefits

“What | cannot create, | do not understand.” —Richard Feynman

* Natural for generation (randomness/diversity, high-dimensional).
* For representation learning: responsible and faithful knowledge of data.
* For supervised learning:

* Data efficiency [NJO1]: * Leverage unlabeled data: !
semi-supervised learning. :
d o | e
€Dis,N < €Dis,00 + O ( ﬁ) |
Unlabeled data {x("V} can |
log d be utilized to learn a better \_ I
€Gen,N < €Gen,co T @) p(x; )’) 4 O: ®oq
N ° ... 0e®
.. l,—--h.""..
d: data dimension. ~~ e L0 -
. == 00 -~ 0.9
N': data size. oo .oo'



https://en.wikipedia.org/wiki/Semi-supervised_learning#/media/File:Example_of_unlabeled_data_in_semisupervised_learning.png

Generative Model: Taxonomy

* Plain Generative Models: Directly model p(x); no latent variable. pe(x)@
* Latent Variable Models:

* Deterministic Generative Models: * Probabilistic Graphical Models:
Dependency between x and z is Dependency between x and z is
deterministic: x = fg(2). probabilistic: (x,z) ~ pg(x, z).

7 A 4
(2) )
p(z) o .
[ ]
x = fg(2) .
[ ]
[~ %= he
po (x) *




Generative Model: Taxonomy

e Latent Variable Models
* Probabilistic Graphical Models (PGM):

* Directed PGM: * Undirected PGM:
p(x, z) specified by p(z) and p(x|z). p(x, z) specified by an Energy function:

py(x,z) « exp(—Eg(x,2)).

p(2)
X ~ Do (XlZ) Pe (X, Z) X exp(_EQ (X, Z))

po(x)



Generative Model: Taxonomy

) whether use latent —
Generative Model / variable z deterministic or

Plain Generative

Model

Autoregressive
Model

Deterministic Probabilistic Graphical

probabilistic z-x
Latent Variable Model / dependency
Model

Generative Model
Directed PGM Undirected PGM
Energy-Based
n

Flow-Based Diffusion Model Score-Based
Model Model

p(2) p(2) (2)
pg(x, Z) X \ |X)
x = fo(2) x ~ po(x|2) exp(—Eg (x Z)) pe (x|2)

Po(x) Po.s (%)



Outline

* Generative Models: Overview

* Plain Generative Models
* Autoregressive Models

e Latent Variable Models
* Deterministic Generative Models
* Generative Adversarial Nets
* Flow-Based Models
* Probabilistic Graphical Models

e Directed PGMs (VAE)

* Bayesian Inference (variational inference, MCMC)

e Cyclic PGM
e Undirected PGMs (energy-based models, score-based models)
 Diffusion-Based Models



Plain Generative Models

* Directly model pgy(x) (parameter 6) without latent variable.

e Easy to learn (no normalization issue of data likelihood) and use (data generation).

e Learning: Maximum Likelihood Estimation (MLE). Kullback-Leibler divergence
0" = arg max Ep(x)llogpe(x)] = arg mein KL, pg) | KL, pp) = Ep(x) [log :9 ((xx))
~ arg mglx%Zﬁ:llogpg (x ™). ‘
* First example: Gaussian Mixture Model di
po (%) = Ti=1 @V (x|t Zi), : 4

0=(a,ul).




Autoregressive Models

= () (m) (8)

p(xq, %7, . p(xq) p(xz|x1) p(x3]xq, Xx7)-- p(xqlx<q)

Model p(x) by each conditional p(x;|x;) (i indices components).
* Full dependency can be restored.
* Conditionals are easier to model.
* Easy data generation:
x ~px) © x1 ~p(x1),x, ~p(xalxq), o, xg ~ 0(xglx1, 00y X5-1).
But non-parallelizable.



Autoregressive Models

* Atypical language model: Use a hidden state to represent the dependency on previous items.

OpenAl GPT

[DCLT18]


https://arxiv.org/pdf/1810.04805.pdf

Outline

* Generative Models: Overview

* Plain Generative Models
* Autoregressive Models

e Latent Variable Models
* Deterministic Generative Models
* Generative Adversarial Nets
* Flow-Based Models
* Probabilistic Graphical Models

e Directed PGMs (VAE)

* Bayesian Inference (variational inference, MCMC)

e Cyclic PGM
e Undirected PGMs (energy-based models, score-based models)
 Diffusion-Based Models



Latent Variable Models

 Latent Variable:
* Sampling a complicated distribution is hard

- Sampling a simple distribution then transforming it with a flexible NN.

* Abstract knowledge of data; enable more tasks.

* dimensionality reduction
* semantic representation
* manipulated generation

“ROYAL”

mailn welzw m “PUBLIC”

x (documents)

“ENGINES”

“DESIGN”

speed product
britain queen
commander forces
analysis space
act office
size glass
report health

Z (topics) [PT13]

introduced
sir
war
program
judge
device
community



Generative Adversarial Nets
p(z)
X = fg(2)

(Neural Nets)

* Deterministic fg:z = x, modeled by a neural network.
+ Flexible modeling ability.
+ Good generation performance.
- Hard to infer z of a data point x. o (%)
- Unavailable p.d.f/p.m.f pg(x).
- Mode-collapse.

* Learning: m@in discr(ﬁ(x),pg (x)).
e discr. = KL(p, pg) = MLE: max Es[log pgl, but the p.d.f/p.m.f py(x) is unavailable!

* discr. = Jensen-Shannon divergence [GPM+14].
e discr. = Wasserstein distance [ACB17].



Generative Adversarial Nets

* Learning: min discr(“(x) (x)) P
T PR PoR ) X = fy(2)
* GAN [GPm+14]: discr. = Jensen-Shannon divergence. (Neural Nets)
\ 1 Do +D P +D
IS(B,pe) =7 (KL (p, > ) + KL (Pe» 5 P (%)

= 5 max Escolloga(T(x))] + Fpg(x) [log (1 — J(T(x)))l +log?2.
=E, (2 [log(l—a(T(fg(z))))]

. G(T(x)) is the discriminator; T implemented as a neural network.

* Expectations can be estimated by samples.
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* Plain Generative Models
* Autoregressive Models

e Latent Variable Models
* Deterministic Generative Models
* Generative Adversarial Nets
* Flow-Based Models
* Probabilistic Graphical Models

e Directed PGMs (VAE)

* Bayesian Inference (variational inference, MCMC)

e Cyclic PGM
e Undirected PGMs (energy-based models, score-based models)
 Diffusion-Based Models



Flow-Based Models b(2)

* Deterministic and invertible fp:z - x. (_x = Jtct?b(lz))
Invertipie
+ Available density function!
_ af, ! ,
pg(x) =p (Z = f, 1(x)) gi (rule of change of variables). po(x)
i . — —1 \ -1 -1}
+ Easy inference: z = f (x). Jacobian determinant, (agg ) = a((];@ )‘.
X ij xj

- Redundant representation: dim. z = dim. x.

- Restricted fp: deliberative design; either f, or f; ' computes costly.
* Learning: m@in KL(p(x), pg(x)) = MLE: max Es0llogpe(x)].
* Examples:

* NICE [pkB15], RealNVP [psB17], MAF [ppPMm17], GLOW [KD18].
* Also used for variational inference [RM15, KSJ+16].




Flow-Based Models

* RealNVP [DSB17]
* Building block: Coupling: y = g(x),

{ylzd — X1:d
Ya+1:p = Tat1:0 O exp ($(21:q)) + t(z1:q)

X1
L1:d — Yl:d 0
o { y

Td+1: = D — U(y1. @exp( — s(y1.q)),
d+1:D (yd+1'D (yl'd)) b ( (yl'd))’ (a) Forward propagation (b) Inverse propagation
where s and t: RP~%¢ — RP~4 are general functions for scale and translation.

. : : log| _ D—d
Jacobian Determinant: ‘E‘ = exp(ijl Sj(xl:d)).



Flow-Based Models

* Continuous normalizing flow [GcB+18].
Sample zy ~ N'(0,1), let Ze[o 11 satisfy% = f;(z;), take x = z.
* 7Zy © zr is bijective if f; and its first derivatives are Lipschitz continuous.
Po(z0) = N (0,1).
Continuity equation: %pt(z) =-V- (pt(z)ft(z))
= %logpt(zt) ==V fi(z¢).

T
logpr(zr) = logpo(2o) — fo V- fi(z,) dt.
Use ODE solver to solve z; and calculate integral simultaneously.
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* Plain Generative Models
* Autoregressive Models

e Latent Variable Models
* Deterministic Generative Models
* Generative Adversarial Nets
* Flow-Based Models
* Probabilistic Graphical Models

e Directed PGMs (VAE)

* Bayesian Inference (variational inference, MCMC)

e Cyclic PGM
e Undirected PGMs (energy-based models, score-based models)
 Diffusion-Based Models



Probabilistic Graphical Models

* Classical PGMs do emphasize the “graph” information. \p\p\p Q) 51

Directed: Undirected: VOO \D\D
(Sprinkery  (_Rain > DODDWD

(Grasswet) 20000
(S, R, 6) = p(S)p(R)p(GIS, R) p(x) « exp (=X jyee) (20 %) — X H(x)

Energy function —E(x)
* Deep PGMs often have simple graphs, and focus on learning the edge relation:

Dependency between x and z is probabilistic: (x,z) ~ pg(x, z).

p(2)
x ~ po(x|2) po (x, 2)|oc exp(—Eq (x, 2))

po(x)
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* Plain Generative Models
* Autoregressive Models

e Latent Variable Models
* Deterministic Generative Models
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* Flow-Based Models
* Probabilistic Graphical Models

* Directed PGMs (VAE)

* Bayesian Inference (variational inference, MCMC)

e Cyclic PGM
e Undirected PGMs (energy-based models, score-based models)
 Diffusion-Based Models



Directed PGMs

Latent

Bayesian models Prior p(2) (yaribie P;ztzei;i;)r
* Model structure (Bayesian Modeling): _ z ,
: . : Bayesian Bayesian
* Prior p(z): initial belief of z. Modeling Inference
* Likelihood p(x|z): dependence of x on z.
_ Likelihood

* Learning: MLE. p(x|2)

0* = arg m@ax E5(x) [log g (x)], where idence VD?t;

Evidence p(x) = [ p(z,x) dz. p(x) a”j e

 Extract knowledge/representation from data (Bayesian Inference):
p(zx) _ p(2)p(x|z)
p(x)  [p(zx)dz
represents the updated information that observation x conveys to latent z.

* Also required to train the model.

(Bayes’ rule)

Posterior p(z|x) =



Bayesian Inference

Estimate the posterior p(z|x).

Intractable!



Bayesian Inference

 Variational inference (VI)

Use a tractable variational distribution g(z) to approximate p(z|x):
min KL(q(2), p(z]x)).

Tractability: known density function, or samples are easy to draw.
* Parametric VI: use a parameter ¢ to represent d¢ (2).

~ N
* Particle-based VI: use a set of particles {Z(‘)}i=1 to represent q(z).

* Monte Carlo (MC)

* Draw samples from p(z|x).
* Typically done by simulating a Markov chain (i.e., MCMC) for tractability.
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Bayesian Inference: Variational Inference

“Feed two birds with one scone.”

* To do Bayesian inference by: min KL(CI(Z),P(ZPC))r

qeQ
KL(q(Z), Do (zlx)) is hard to compute...
Note log po (x) = Lo[q](x) + KL(q(2), pg(z|x)),
where Lolgl(x) = Eq(pllogpg(z, x)] — Eq(llog q(2)],
e min KL(q(2), p(zlx)) & max Lo[q](x).

The Lg|q](x) = Eqllogpe(z,x)] — E4(llog q(2)] is easier to compute.



Bayesian Inference: Variational Inference

“Feed two birds with one scone.”

* In model learning: E5,[log pg (x)] = %Z%Ll log py (x™).
* Introduce a variational distribution q(z):
log py (x) = Ly[q](x) + KL(q(2), pg (2]x)),

where Lg|q](x) = Eq(z)llogpe(z,x)] — Eq5)llog q(2)].
* Lo|q](x) <logpy(x) =» Evidence Lower BOund (ELBO)!
* Lg|q](x) is easier to estimate.

 (Variational) Expectation-Maximization Algorithm:
Bayesian Inference

(a) E-step: Let Lg|q](x) = logpy(x), thatis ;qnelél KL(q(Z), Do (zlx)j;
(b) M-step: max Lolg](x).

* Classical EM: take q(z) = pg(z|x) (i.e., with exact inference).




Variational Auto-Encoder

p(2)
Flexible Bayesian model using deep learning. pe(x|z)
* Model structure (decoder) [KW14]: X - 6

z ~p(z) = N(z|0,]),

X ~ pe(x|Z) — N(xll,lg (Z);Ze(z));
where g (z) and 24 (z) are modeled by neural networks.



Variational Auto-Encoder i p(2)
Z|x II (x]2)
* Variational inference (encoder) [KW14]: 1 (1) RIIRY pe@
qep(z|x) = N(Z|V¢ (x), Ty (x)), where v (x), 4 (x) are also NNs. D

Lg [q¢](x) = Eqyz10) [log p(2)pe (x]2) — log Q¢(Z|X)]-
* Gradient estimation with the reparameterization trick:

z~qpzlx) & z=g4(xe)=vy(x) +e /F¢(x),e ~ q(e) == N(€|0,1).

* Lo[qs](x) = Eqee [logN(g¢(x, €)10,1) + log ¥ (xmg (gd)(x, E)),zg (gqb(x, 6))) _

log N(g¢ (x,€) |v¢ (x), Ty (x))].
* Smaller variance than REINFORCE-like estimator [Wil92],
VoEqylfol = Eqy[Vofe + foVg logas|.



Bayesian Inference: Variational Inference

* Particle-based variational inference:

N
* Use particles {Z(l)}izl to represent q(z).

* To minimize KL(q(z),p(zlx)), find a proper dynamics —

that decreases KL(q(Z), p(zlx)) fastest.

* One choice of V;: —graquL(q(Z),p(zlx)) =V, log
on the 2-Wasserstein space.
* Wasserstein space:

q
an abstract space of distributions.
* Wasserstein tangent vector M | Jt+e

& vector field.

dZt
dt

p(z|x)

q(z)

= V. (z;) on the particles




Bayesian Inference: Variational Inference

AN
« Particle-based variational inference: use particles {z(l)}iz to represent q(z).

V= graquL(q(Z),p(le)) =V, logp(i;)c).
zW « 7z 4 eV (2D), !

for Gaussian Kernel:

e SVGD [LW16]: Zj KijV_i log p(Z(j) |X) + Zj vz(j)Ki/ Repulsive force!

. iV wKij vV, Kij
- Blob [CZW+18]: V. (p | Olx) - =2 —-%;%—
. 2iV_(hKij
e GFSD [LZC+19]: V_» ] D]x) - == -
[ |G ogp(z |x) > Kik

GFSF [LZC+19]: V_q) logp(z(i)|x) + Zj,k(K_l)ikvz(j)Kkj.
Particle-Based VI for training VAE [FWL17, PGH+17].
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Bayesian Inference: MCMC

* Monte Carlo
* Directly draw (i.i.d.) samples from p(z|x).
* Almost always impossible to directly do so (esp. w/ unnormalized p(z|x)).
* Markov Chain Monte Carlo (MCMC):

Simulate a Markov chain whose stationary distribution is p(z|x).

* Easier to implement: only requires unnormalized p(z|x) (e.g., p(z, x)).
* Asymptotically accurate. ’I

* Drawback/Challenge: sample auto-correlation. .
Less effective than i.i.d. samples.
0.9
n.aal
- J [GC11]

01 0.2 03 04



Bayesian Inference: MCMC

Classical MCMC
* Metropolis-Hastings framework [MRR+53, Has70]:

Draw z* ~ q(z*|z"®) and take z(¥*1) as z* with probability

min{l )p(z %) },
q(z*

else take z(KtD) a5 (),
p(Z*|X) _ p(z*,x)
p(z(")|x) p(z®) x)

* Proposal distribution q(z*|z): e.g., taken as NV'(z*|z, o%).

e Note that can be evaluated.




Bayesian Inference: MCMC

Classical MCMC
* Gibbs sampling [cGs7;:

Iteratively sample from conditional distributions, which are easier to draw:

1 0 0 0
Zl()~p Zq Zg ),Zg ),...,Zc(i ),x),
Zél) ~plz, Zil), ZB(,O), ...,ZC(ZO),x ,
ZS(,l) ~plz; Zfl),zgl), ...,ZC(ZO),x ,
(k+1) (k+1) (k+1) (k) (k)
Z; ~ P (zi 2y ez, i1 e Zg ,x).




Bayesian Inference: MCMC

Dynamics-based MCMC

e Simulates a jump-free continuous-time Markov process (dynamics):
‘/\ o .
dz = (Z) dt + 1/2])(2 dBt(Z) Pos. semi-def. matrix
drift glfoSIO \ Brownian motion

z(t+) = 7O 4 f(z(t))e + N (0,2D(z)e) + o(e),

with appropriate f(z) and D(z) so that p(z|x) is kept stationary/invariant.
1

* Informative transition using gradient V, log p(z|x).
 Compatible with stochastic gradient: more efficient. 0.95]

V,logp(z|x) =V, logp(z)+2neDV logp(x™|z), 09}
V,logp(z|lx) =V, logp(Z)+ Znegv logp(x(")|z) ScD.

DJI 4 [eca]
01 02 03 04




Bayesian Inference: MCMC

Dynamics-based MCMC

* Langevin dynamics [Lan1908]:
dz = Vlogp(z) dt + V2 dB,.

* Another way to realize the Wasserstein gradient flow

‘iff —grad,KL(q(2), p(z|x)) [JKO98].
e Algorithm (also called Metropolis Adapted Langevin Algorithm) [RS02]:

26 = 70 + eVlogp(zP|x) + N (0,2¢),

followed by an optional MH step.
 Compatible with SG [WT11, CDC15, TTV16].

* MCMC for training VAE [LTL17]:
* Train the encoder as a sample generator.
* Amortize the update on samples to ¢.
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Cyclic Generative Model (ra+21 p(@)

X\|Z

VAE: modeling p(x, z) by specifying a prior p(z) =2 ol
(1) Hard inference. (2) Manifold mismatch. (3) Posterior collapse.

Need inference ~ true learned class-wise .. . ., -

model data data posterior &b

anyway. distr. distr. samples T ,74‘&
CyGen: Use in place of p(z) to define p(x, z):

* Thm (informal): Con(dxi'lcio)nal densities p(x|2), come from a common joint p(x, z)
p(X|Z

(compatible), iff. factorizes as a(x)b(z) on a certain region that they determine.

Such p(x, z) is unique on each of such regions (determinacy).

* For p(x|z) = 8¢, (x): Compatibility & Ixg s.t. ¢(f " ({xoDlxo) = 1;
Trivial determinacy: each region is a (f (2), z¢) point, so p(x,2) = 8(f(z,),z,) (X, Z).
=>» Use probabilistic p(x|z) and



Cyclic Generative Model (ra+21 p(@)

samples AR

_ . po(x|z)
CyGen: Use in place of p(z) to define p(x, z):
e Algorithms are possible!
2
* Enforcing compatibility: min E,« (4, HVxV} log (pg (x|z)/ )H .
F
* Data fitting (learning): MLE: E,« () [log Po,¢ (x)] = Ep+x) [— log E 11/pg (x|z’)]].
e Data generation: MCMC (Langevin dynamics)
(k) |, (k)
xtD) = x () 4 eV log polx 1z 7) | V2e n), where z(8) ~ ,n®) ~ n(0,).
* Manifold mismatch. * Posterior collapse.
VAE CyGen VKE CyGen
true learned class-wise . . . -
data data posterior e :""”:%
dIStI‘. diStr. & ? ; h: .‘ {'”K )

e Limitations:
* Cost and convergence in generation.
 Effectiveness when dimensions have deterministic relations.



Cyclic Generative Models [ra+21

* Masked language/vision models are Cyclic Generative Models!
* BERT / Masked Auto-Encoder: learns p(x;|x4, ..., X;_1, X;4+1, ..., X)) fOr each i.

* They are almost generative models.

Google BERT

[DCLT18]

u
Y
B o NS

, \

HEENS Wyise =

B encoder —= decoder| — — [ I
A ViNEE»=
ENEEE HENES

input target

[HCX+21]


https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/2111.06377.pdf
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Undirected PGMs

Specify pg (x, z) by an energy function Eg(x, 2): P (x, 2)|x exp(—Eq(x, 2))
1 !/ !/ !/ !/
po(x,z) = %exp(—Eg(x, 2)),Zg = [exp(—Eg(x’,2")) dx'dz’.
* Only correlation and no causality: p(x, z) is either p(z)p(x|z) or p(x)p(z|x).

+ Flexible and simple in modeling dependency.

- Harder to learn and generate than directed PGMs.

=0if E = logp.
* Learning: even pg(x, z) is unavailable. /
VoEsuollogpe ()] = —Ej00)pp 210 [VoEe (X, 2)| + Ep . ) [Vo Eg (x, 2) .
t t
(augmented) data distribution model distribution
(Bayesian inference) (generation)

* Bayesian inference: generally same as directed PGMs.
* Generation: rely on MCMC or training a generator.



Undirected PGMs

* Learning: Vo Epx)[log pg(x)] = p(x)pg(z|x) [VoEg(x,2)] + IEpg(xZ) [VoEg(x,2)].

Bayesian Inference Generatlon

e Restricted Boltzmann Machine [Smo86]:

T T
Eg(x,2) = —x"Wz+ b x4+ p@ 7z
e Bayesian Inference is exact:

po(zi|x) = Bern (0 (xTWk + b,(f))).
* Generation: Gibbs sampling.
Iterate:

pe (zx|x) = Bern (a (xTWk + b,(cz))),

Py (xx|z) = Bern (0 (Wk:z + b,((x))).




Undirected PGMs

Deep Energy-Based Models:
No latent variable; Eg(x) is modeled by a neural network.
VoEp) llogpe (X)] = —Ep() [VeEg(x)] + E, (1) [VeEg(x")].
 [DM19]: estimate Epg(x’)[ | by samples drawn by the Langevin dynamics
x U+ = x(B) — ey Ey(x) + N (0, 2¢).

* Same as the generation process.
e
Eq. 8

e Replay buffer for initializing

the LD chain.

* L,-regularization on the
energy function.

[--mw}

Replay Buffer X Training Data



Score-Based Generative Models

e Score-based methods [HyvO5]:
* Learn sy(X) (represents V, log pg(x) = —V,Eg(x)) to approx V4 10g pgata(X).

 Data generation: run MCMC, e.g., Langevin dynamics with sg(x).
x*+D) = x(0) 4 g5, (x(0)) + (0, 2¢).



Score-Based Generative Models

* Training with Score Matching (SM): Recall s (x) := V, log pg(x), so:
argmin E ) llsg(x) — Vlogg(x)||* = argmin E, o lllsg G? + 2V - 54 (x)] Hyvos).
0 0

]
Vlog g(x) is unknown... 'Q' Only requires data from g(x)!

* Denoising Score Matching (DSM) [vin11]:

* When data distributes on a low-dimensional manifold, Vlog g(x) is ill-defined.
> Learn the score of ¢, (%) = (¢ * p,)(X) = [ ¢(x)q,(X[x) dx, q,(X[x) = N (X]x,0?Ip).
* SMto perturbed:  argminE,_[llsg(X)II* + 2V - s4(X).
6
2

. €
DSM: = argénm E;x)Ep, (o ‘sg(x + o€) + -

drives s5(X) — Vlogg,(X) = Vlog(q * p,)(X).



Score-Based Generative Models

* Noise-Conditioned Score Network (NCSN) [se19):

2 = q * Pg, 41 = q * Dg,

qn = q *Dgy DSM : DSM : DSM : DSM l Jo =@
X Poy —:PN v \ Y ~ Po,0
\_‘; SQ,Z 59,1
—e

Y
LDw/sg, P62 LDw/sg, Poa LD w/ sg 9

Lpsm = Ey(ijo,...n)AiEqx E [s6,:(R) — Vg log ||2



Outline

* Generative Models: Overview

* Plain Generative Models
* Autoregressive Models

e Latent Variable Models
* Deterministic Generative Models
* Generative Adversarial Nets
* Flow-Based Models
* Probabilistic Graphical Models

e Directed PGMs (VAE)

* Bayesian Inference (variational inference, MCMC)

e Cyclic PGM
e Undirected PGMs (energy-based models, score-based models)
 Diffusion-Based Models



Score-Based and Diffusion-Based Generative Models

* Diffusion-based generative model (cont. time form (ssk+21):

< dx, = f.(x,) dt — g#Vlog q.(x,) dt + g, dB; (equiv. in path distr. g(X1.7)).
~ qt: dXt — ft(Xt) dt + gt dBt

X, = Xq + f1(X1)h + g, N (0, hl),

X ~ QZ$ X1 ~q1
qar DSM | DSM | DSM | do = q
X Dy l v \ ~ pQ,O

Sg,2 Sg,1
——

~ pQ,Z p@ 1

X; =X, — 92(X2)h + g,V (0, hI) .
X ~ qg: dxg = —fz(x¢) df + g7Vlogqz (x¢) df + g7 dBg
Only needs the score!
~ 2
LDSM = [EU(i|{0,...,N})/1iIEq0(X)IE ”Sg,i (X) — V)'z log ” [SSK+21].

(Real continuous-time training available.)



Diffusion-Based Generative Models

 Specification of diffusion-based generative model:

* To make g = py where py is tractable,
=» Langevin dynamics targeting py := N (0, l) with time dilation S, (wwij1e],

[SWMG15, HJA20: DDPM;
dx; = &Vlog py(X) dt + /B dB; = __Xt dt + /B¢ dB¢. ssk+21: vp sDE]
2
* For Lpsm(8) = Eyo...nn4iEq, 0 E ||sgl(x) V4 log |” tssk+211:

= N(gx (1= 6P, ¢, = eho 295 (¢, = [[i_, JT=F, + o(h),

2
2> Lpsm(8) = EiiEq 0 Eqy0 @i i

SB,L’(X) + 1—c2
2
€
Sg i (Cix+ ,/1 — Ci2€i> +
/1—gf

— IEiAiIEqO(X) ]Ep(ei) [SSK+21]




Diffusion-Based Generative Models

* Different forms of model:
Under dx; = %Vlog py (X;) dt + \/E dB; = —%xt dt + \/E dB; [sSWMG15, HIA20]:

2

/ €
o LDSM(H) = Ei/li]EqO(x)]Ep(ei) Sg i (gix + |1 — g‘iZEi) + \/liz [SSK+21]
1-¢;
Let €g,;(x;) == — /1 — 67 8g,i(Xy): 5
_m A . /_2___[HJA20:
= b 1-¢7 Eao0oEpte | €. (glx s El) “|| - DOPM simple loss] | poes not (and impossible!)
- Xi—,/l—Ciz €g,i(x;) _ xi+(1-¢%)sg,(x)  [SME21, KSPH21, KAAL22, to recover the exact €; or
Let Xgg,; (X;) = o = o * SDCS23, WMH+23] X used to produce X!
2
_ Aist / 2 i
= [E; @:—C;)Zqu(x)Ep(ei) X00,i (Cix + |1 —=¢; Ei) —X Understand as a statistics:
l
. . 5 * €9,(x;) = Ele|x;].
== Denoising model E; x)Eqx)lIX0s (X) — x[|*! . Xop:(X;) = E[Xo|X,].
[VLBMOS: Denoising AutoEncoder; Vin11, AB14: connection to (D)SM]. '




Diffusion-Based Generative Models

* Noise-Conditioned Score Network (NCSN) [se191 as a diffusion model

[SSK+21]: X¢ ~ Q¢ dX, = +/(02)" dB; [SSK+21: VE SDE]
t f t t
dn = 4 * Pgy DSM | DSM | DSM I DSM | do "= ¢4

N . | | v Corrector
-~ pO-N o pN v v ~ ) .
sg 2 59 1 Predictor
,

++/(0%) N(O, hl).
X¢ ~ gz dxg = (07)'Vlegqs (x¢) dt + /(o) dBg ’ ,
LDSM = EU(i|{0,...,N})AiEqO(x)E ”Sg,i(X) — Vi log ” [SSK+21].

* A corrector is also available for DDPM (VP SDE) [ssk+21].
* g; X v/t in NCSN equivalent [sE19, ssk+21]. g; X t is recommended in [KAAL22].




Diffusion-Based Generative Models

e Probability flow (PF) ODE (ssk+21]:
< dx, = f.(x,) dt — gZVlog q.(x,) dt + g, dB; (equiv. in path distr. q(X;.7)).
Xt ~ qt: dXt — ft(Xt) dt + gt dBt

2
‘/i & dx; = f.(x;) dt — %Vlog q:(x;) dt (equiv. in marginatdiste—q, (x;), Vt).

dr , do =4
—_— & dxg = —fz(xg) dt + nglog q¢(x¢) df (equiv. in marginal distr qz(x¢), V).
X ~ qg: dxg = —fz(x¢) df + g7 Vlogqz (xz) df + g dB;
Still only needs the score!

* Deterministic equivalent: X holds all information about x|,
=>» representation, interpolation, ...

* Likelihood/density evaluation (same way as cont.-time flow models):
T 2
logpg(x) = logpr(X7) + fo V| £ (%) — = sg,:(X¢) | dt,

2
. o dXt g%
where Xe[o,r] satisfies Xg = X, — = f,(x;) — 750,t(xt).
e Continuous-time reverse process simulation using ODE solver for generation:
* More accurate vs. discrete-time.

* Enable techniques for faster generation (larger step size, DPM-Solver(++), ...).




Diffusion-Based Generative Models

* Summary
* vs. VAE/GAN/NF:
* Guidance to the generator from a given distribution-transformation process.

» Losses at different steps are decoupled: effective training (vs. cont.-time
normalizing flow training).

Lpsm = Eygijo,..npAiEqy0 E [s6,:(%) — Vg log I



Consistency Model (socs23)

Data Noise
L Data
/ Fo % ) ( T) : 5
X7,
\(XO,U fa(xe,t Xt 1) (x¢r,t') o

e fo(xr,T) /

* Generative modeling by learning the solution to reverse PF ODE:
* €y ¢(X;) inverts the forward PF ODE to find the clean data point X, of a “noised” input x,.

oise

2 _
* ¢y ¢(X;) = Xg solves the reverse PF ODE: dx; = —fz(xz) df + %Vlog q:(x7) dt, given x; = x;.
* Benefits of the ¢g . (X;) model:

* Generation in one evaluation: X ~ pr, Xg = €g r(X7) (same mode as VAE/GAN/NF!).
* Can also be used iteratively: Enable trade-off b/t quality and cost!

X7 ~ P, Xo = Cor(X7);  Xp_1 ~ qr-1j0(X7-1]X0), X0 = €971 (X7-1); -



Consistency Model (socs23)

» Consistency training: €g ((X;) = €4/ (X;r) for X¢¢[o,r] ON the same PF ODE curve.
* Distillation: learn from a pre-trained diffusion model s ; (X;).
E;Eq(x)) [Aid (Ce,i(xi); Co—i—1 (ﬁcp,i—1(xi)))],

. )“((,,,i_l(xi) is one-step reverse PF ODE simulation using sy from x;,
s.t. ()A(d,,i_l(xi),xi) are on the same PF curve.

* 07 : exponential moving avg. and stopped-grad.
 Drawing q(x;): draw a sample X, from dataset, and draw from q(X;|x,) stochastically.

* Train from scratch: use a stochastic est. of score in place of s +(X;):
EiEqxp [Aid (CB,i(Xi): co-i—1(%;—1(x;, Viog Qi(Xi))))]
=Fisherld gy [4id (cg,i(xi), Co- i1 ()?i_l(xi, Eq(x, x| Vx; 108 q(xi|x0)])))] intractable
< EiEqxpEqx|xp) |4id (Ce,i(Xi); Co—i-1 (?A(i—1(xi» Vy, log Q(Xi|Xo))))
= EiEqx)Eqx|x,) [4id (Cg’i(xi),Cg—,i_l (ﬁi_l(xi, Vi, log q(xi|x0)))) tractable.

* The bound cannot be made tight by optimizing the models.
e But the gap will diminish for infinitesimal ODE step size.



Consistency Model (socs23)
* Consistency training: €g ((X;) = €q/(X;7) for X¢¢[o,r] ON the same PF ODE curve.

EiEqxp lllid (Ce,i(xi)» Co—i-1 (§¢,i—1(xi)))]-
Comments:
e ODE formulation:

. d 0 d il e eas o
The PDE for cg; is acg,t(xt) =0= ac@,t(xt) + Veg ¢ (X¢) -% with initial condition
dx

Cg o(X) = X, where d—tt is given through the PF ODE.

* The consistency model ¢g +(X;) minimizing the consistency loss is not the X(g  (X;)
model (as a score-model parameterization) that minimizes the DSM loss!



Generative Model: Summary

m Latent Variable Models

Autoregres- Deterministic Generative Probabilistic Graphical Models
sive Models GANs Flow-Based Directed Dir.: Diffusion Undirected Cyclic
+ Easy + Easy generation - Hard generation (use MCMC)
Eenlerati”ohn( - Nollh (hard + Explicitlh(  Unnormalized llh: + stable learning, - need expectation est.
+ Explicit - -
easy learn- ] easy learning) |, Moderate repr. + Easy repr. - Hard repr. + Easy &
el - Har(?l REEL | 5 BeE + Prior knowledge  + Allow big - MCMCin learning  flexible repr.
_ No natural + Flexible - High-dim. + Small-data robust  model + Simple depen- + Flexible
- model repr. + Describe causality - High-dim. dency modeling distribution
pr. - Hard model repr
- Slow/seq. design :
generation

Colors represent:

Model component p(z) p(z) p(z) N p(z) a a

Derived quantity x = f5(2) x = fy(2) CI¢‘\(Z|X) x) pe(x,z) « \z|x)

Auxiliary part (neural nets) (invertible) Py (x|2) ,'l po (x|2)} (fixed) exp(~Lo(xf2))  po(x|2)
@@ @) 0@ p0@E P po.s ()



Questions?
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