高等机器学习

0

- Generative Models: Models that define p(data): p(x) (unsupervised) or p(x, y) (supervised).
 - By computing the p.d.f/p.m.f of p(data): data generation can be done in principle.
 - By specifying a generating process of data: the distribution p(data) is implicitly defined.

Unsupervised:

$${x^{(1)}, ..., x^{(N)}} = \{ 2, 7, 7, 7, 7, 5, ..., 0 \} \sim p(x)$$

Supervised:

$$\left\{ \left(x^{(1)}, y^{(1)}\right), \dots, \left(x^{(N)}, y^{(N)}\right) \right\} = \left\{ \left(22, ..., (27), \dots, (27), ..., (27)\right) \right\} \sim p(x, y)$$

• Non-Generative Models:

Discriminative models (e.g., feedforward neural networks): only p(y|x) is available.

- What can generative models do:
 - 1. Generate new data.

 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6

Generation p(x) [KW14]

Conditional Generation p(x|y) [LWZZ18]

- What can generative models do:
 - 1. Generate new data.

"the cat sat on the mat" ~ p(x): Language Model.

- What can generative models do:
 - 2. Infer unobserved variables.

Did it *Rain* if we see *GrassWet*? -- Query p(R|G = 1) from p(S, R, G).

Missing Value Imputation (Completion) [OKK16]. -- Query $p(x_{\text{hidden}}|x_{\text{observed}})$ from $p(x_{\text{hidden}}, x_{\text{observed}})$.

- What can generative models do:
 - 3. Density estimation p(x).
 - Uncertainty estimate.
 - Anomaly detection.

- What can generative models do:
 - 4. Representation learning: semantic and concise (via latent variable z).

x (documents)

13

54

23456789

5

56

x (image)

567

3

"ENGINES" "ROYAL" "ARMY" "STUDY" "PARTY" "DESIGN" "PUBLIC" speed britain commander analysis act size report product queen forces space office glass health

introduced

sir

war

program

judge

device

community

designs earl general user justice memory industry

z (topics) [PT13]

z (semantic regions) [DFD+18]

清华大学-MSRA《高等机器学习》

- What can generative models do:
 - 4. Representation learning: semantic and concise (via latent variable z).

清华大学-MSRA《高等机器学习》

- What can generative models do:
 - 5. Supervised Learning: query p(y|x) from p(x, y).

- What can generative models do:
 - 5. Supervised Learning: query p(y|x) from p(x, y).

Semi-Supervised Learning:

Unlabeled data $\{x^{(n)}\}$ can be utilized to learn a better p(x, y).

Generative Model: Benefits

"What I cannot create, I do not understand." —Richard Feynman

- Natural for generation (*randomness/diversity, high-dimensional*).
- For representation learning: responsible and faithful knowledge of data.
- For supervised learning:
 - Leverage unlabeled data: semi-supervised learning.
 - Data-efficient: for logistic regression (discriminative) and naive Bayes (generative) [NJ01],

$$\epsilon_{\mathrm{Dis},N} \leq \epsilon_{\mathrm{Dis},\infty} + O\left(\sqrt{\frac{d}{N}}\right) \qquad d: \text{data dimension.} \\ \epsilon_{\mathrm{Gen},N} \leq \epsilon_{\mathrm{Gen},\infty} + O\left(\sqrt{\frac{\log d}{N}}\right) \qquad N: \text{ data size.}$$

Generative Model: Taxonomy

- Plain Generative Models: Directly model p(x); no latent variable. $p_{\theta}(x)(x)$
- Latent Variable Models:
 - Deterministic Generative Models: Dependency between x and z is deterministic: $x = f_{\theta}(z)$.

• Probabilistic Graphical Models: Dependency between x and z is probabilistic: $(x, z) \sim p_{\theta}(x, z)$.

Generative Model: Taxonomy

- Latent Variable Models
 - Probabilistic Graphical Models (PGM):
 - Directed PGM: ۲

Undirected PGM: p(x,z) specified by p(z) and p(x|z). p(x,z) specified by an Energy function: $p_{\theta}(x,z) \propto \exp(-E_{\theta}(x,z)).$

Generative Model: Taxonomy

2022/05/16

清华大学-MSRA《高等机器学习》

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

Plain Generative Models

- Directly model $p_{\theta}(x)$ (parameter θ) without latent variable.
- Easy to learn (no normalization issue of data likelihood) and use (data generation).
- Learning: Maximum Likelihood Estimation (MLE).

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = \arg \min_{\theta} \text{KL}(\hat{p}, p_{\theta}) \leftarrow \arg \max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(x^{(n)}).$$

• First example: Gaussian Mixture Model $p_{\theta}(x) = \sum_{k=1}^{K} \alpha_k \mathcal{N}(x | \mu_k, \Sigma_k),$ $\theta = (\alpha, \mu, \Sigma).$ Kullback-Leibler divergence $KL(\hat{p}, p_{\theta}) \coloneqq \mathbb{E}_{\hat{p}(x)} \left[\log \frac{\hat{p}(x)}{p_{\theta}(x)} \right]$

清华大学-MSRA《高等机器学习》

Model p(x) by each conditional $p(x_i|x_{< i})$ (*i* indices components).

- Full dependency can be restored.
- Conditionals are easier to model.
- Easy data generation:

 $x \sim p(x) \Leftrightarrow x_1 \sim p(x_1), x_2 \sim p(x_2|x_1), \dots, x_d \sim p(x_d|x_1, \dots, x_{d-1}).$ But **non-parallelizable**.

- Fully Visible Sigmoid Belief Network [Fre98] $p(x_i|x_{< i}) = \text{Bern}(x_i|\sigma(\sum_{j < i} W_{ij}x_j))$
- Neural Autoregressive Distribution Estimator [LM11] $p(x_i|x_{< i}) = \text{Bern}(x_i|\sigma(V_{i,:}\sigma(W_{:,< i}x_{< i} + a) + b_i))$
- A typical language model: Use a hidden state to represent the dependency on previous items.
 p(x = "the cat sat on the mat")
 - $= p(x_1 = \text{the}) \ p(\text{cat}|x_1) \ p(\text{sat}|x_{1...2}) \ p(\text{on}|x_{1...3}) \ p(\text{the}|x_{1...4}) \ p(\text{mat}|x_{1...5}) \ p(</\!/s>|x_{1...6})$

Sigmoid function

- WaveNet [ODZ+16]
 - Construct $p(x_i|x_{\leq i})$ via Causal Convolution

- PixelCNN & PixelRNN [ОКК16]
 - Autoregressive structure of an image:

• PixelCNN: model conditional distributions via (masked) convolution:

$$h_i = K * x_{
$$p(x_i | x_{$$$$

- Bounded receptive field.
- Likelihood evaluation: parallel

- PixelCNN & PixelRNN [OKK16]
 - PixelRNN: model conditional distributions via recurrent connection:
 1D convolution

$$[h_i, c_i] = \operatorname{LSTM}\left(\overbrace{K * h_{(\lfloor i/n \rfloor n - n) : \lfloor i/n \rfloor n}}^{\text{ID-convolution}}, c_{i-1}, x_{i-1}\right),$$
$$p(x_i | x_{< i}) = \operatorname{NN}(h_i).$$

- Unbounded receptive field.
- Likelihood evaluation (in-row): parallel Likelihood evaluation (inter-row): sequential

1

• PixelCNN & PixelRNN [ОКК16]

Image Completion

Image Generation

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

Latent Variable Models

- Latent Variable:
 - Abstract knowledge of data; enables various tasks.

Manipulated Generation

Dimensionality Reduction

Latent Variable Models

- Latent Variable:
 - Compact representation of dependency.

De Finetti's Theorem (1955): if $(x_1, x_2, ...)$ are *infinitely exchangeable*, then \exists r.v. z and $p(\cdot | z)$ s.t. $\forall n$,

$$p(x_1, \dots, x_n) = \int \left(\prod_{i=1}^n p(x_i|z)\right) p(z) dz.$$

$$p\left(x_1, \dots, x_n\right) = \int_z p\left(\underbrace{z}_{x_1, x_2, \dots, x_n}\right)$$

Infinite exchangeability:

For all
$$n$$
 and permutation σ , $p(x_1, \dots, x_n) = p(x_{\sigma(1)}, \dots, x_{\sigma(n)})$.

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

Generative Adversarial Nets

- Deterministic $f_{\theta}: z \mapsto x$, modeled by a neural network.
 - + Flexible modeling ability.
 - + Good generation performance.
 - Hard to infer z of a data point x.
 - Unavailable p.d.f/p.m.f $p_{\theta}(x)$.
 - Mode-collapse.
- Learning: $\min_{\theta} \operatorname{discr}(\hat{p}(x), p_{\theta}(x)).$
 - discr. = $KL(\hat{p}, p_{\theta}) \Rightarrow MLE: \max_{\theta} \mathbb{E}_{\hat{p}}[\log p_{\theta}]$, but the p.d.f/p.m.f $p_{\theta}(x)$ is unavailable!
 - discr. = Jensen-Shannon divergence [GPM+14].
 - discr. = Wasserstein distance [ACB17].

Generative Adversarial Nets

- - $\sigma(T(x))$ is the discriminator; T implemented as a neural network.
 - Expectations can be estimated by samples.

Generative Adversarial Nets

- Learning: $\min_{\alpha} \operatorname{discr}(\hat{p}(x), p_{\theta}(x)).$
 - WGAN [ACB17]: discr. = Wasserstein distance:

$$d_{W}(\hat{p}, p_{\theta}) = \inf_{\substack{\gamma \in \Gamma(\hat{p}, p_{\theta}) \\ = \sup_{\phi \in \operatorname{Lip}_{1}} \mathbb{E}_{\hat{p}}[\phi] - \mathbb{E}_{p_{\theta}}[\phi].$$

- Choose ϕ as a neural network with parameter clipping.
- Benefit: d_W has more alleviative reaction to distribution difference than JS.

清华大学-MSRA《高等机器学习》

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

- Deterministic and invertible $f_{\theta}: z \mapsto x$.
 - + Available density function!

 $p_{\theta}(x) = p\left(z = f_{\theta}^{-1}(x)\right) \left|\frac{\partial f_{\theta}^{-1}}{\partial x}\right|$ (rule of change of variables). Jacobian determinant, $\left(\frac{\partial f_{\theta}^{-1}}{\partial x}\right)_{i:i} \coloneqq \frac{\partial (f_{\theta}^{-1})_{i}}{\partial x_{i}}$.

- + Easy inference: $z = f_{\theta}^{-1}(x)$.
- Redundant representation: dim. z = dim. x.
- Restricted f_{θ} : deliberative design; either f_{θ} or f_{θ}^{-1} computes costly.
- Learning: $\min_{\alpha} \operatorname{KL}(\hat{p}(x), p_{\theta}(x)) \Longrightarrow \operatorname{MLE}: \max_{\alpha} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)].$
- Examples:
 - NICE [DKB15], RealNVP [DSB17], MAF [PPM17], GLOW [KD18].
 - Also used for variational inference [RM15, KSJ+16].

p(z)

 $p_{\theta}(x)$

 $x = f_{\theta}(z)$

(invertible)

- RealNVP [DSB17]
 - Building block: **Coupling**: y = g(x),

$$\begin{cases} y_{1:d} &= x_{1:d} \\ y_{d+1:D} &= x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1:d} = y_{1:d} \\ x_{d+1:D} = (y_{d+1:D} - t(y_{1:d})) \odot \exp\big(-s(y_{1:d})\big), \end{cases}$$

where s and $t: \mathbb{R}^{D-d} \to \mathbb{R}^{D-d}$ are general functions for scale and translation.

- Jacobian Determinant: $\left|\frac{\partial g}{\partial x}\right| = \exp\left(\sum_{j=1}^{D-d} s_j(x_{1:d})\right).$
- Partitioning x using a binary mask b:

$$y = b \odot x + (1 - b) \odot \left(x \odot \exp \left(s(b \odot x) \right) + t(b \odot x) \right).$$

- RealNVP [DSB17]
 - Building block: Squeezing: from $s \times s \times c$ to $\frac{s}{2} \times \frac{s}{2} \times 4c$:

清华大学-MSRA《高等机器学习》

2022/05/16

• RealNVP [DSB17]

Flow-Based Models

• GLOW [KD18]

Generation Results (Interpolation)

Generation Results (Manipulation; each semantic direction = $\bar{z}_{pos} - \bar{z}_{neg}$)

(a) Smiling

(b) Pale Skin

(c) Blond Hair

(d) Narrow Eyes

(f) Male

Flow-Based Models

- Autoregressive flows [KSJ+16, PPM17].
 - Tractable inverse & JacDet.
 - One direction is non-parallelable.
 - Universal approximator [TIT+20].

[source]

• Continuous normalizing flow [GCB+18].

$$\partial_t z_t = f_t(z_t) \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \log p_t(z_t) = -\nabla \cdot f_t(z_t) = -\mathrm{tr}\left(\frac{\partial f_t}{\partial z}\right)$$

• Use ODE solver for fwd/bwd map and $\log p_{t_1}(z(t_1)) = \log p_{t_0}(z(t_0)) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f_t}{\partial z}\right) dt$.

Flow-Based Models

- Residual flows.
 - ResNet block $x_{t+1} \coloneqq F_{\theta_t}(x_t) \coloneqq x_t + g_{\theta_t}(x_t)$ is invertible if $\text{Lip}(g_{\theta_t}) < 1$.
 - Inverse map: fixed-point iteration.
 - JacDet: $\ln \det J_F = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\operatorname{tr}(J_g^k)}{k}$.
 - Hutchinson's trace estimator: $\operatorname{tr}(A) = \mathbb{E}[v^{\mathsf{T}}Av],$ where $\mathbb{E}[v] = 0$, $\operatorname{cov}[v] = I$.
 - Truncated estimate [BGC19].
 - Unbiased "Russian roulette" estimator [CBD19].
- Approximation theory.
 - [KC20, TIT+20].

Jacobiai

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

Classical Probabilistic Graphical Models

- Generally, they may or may not have latent variables.
- Intuitively: represent variable **relations** by a graph.
- Formally: a way to represent a joint distribution by making **conditional independence (CI)** assumptions.

$$p(x) \propto \exp\left(\frac{-\sum_{(i,j)\in\mathcal{E}} J(x_i, x_j) - \sum_i H(x_i)}{\text{Energy function } -E(x)}\right)$$

- Represented by a **Directed Acyclic Graph** (DAG).
- Synonyms: Bayesian/belief/causal network.

- d-separation: read off encoded CI assumptions in general.
 - A path is called d-separated by a set of nodes S, if P either has an emitter X ("→ X →" or "← X →") in S, or has a collider X ("→ X ←") that is not in S nor is any descendant of X.

As a language of causality

- Formal definition of causality:
 - "two variables have a causal relation, if **intervening** the cause may change the effect, but not vice versa" [Pearl09, PJS17].
 - Intervention: change the value of a variable by leveraging mechanisms and changing variables out of the considered system.
- Example: for the Altitude and average Temperature of a city, $A \rightarrow T$.
 - Running a huge heater (intv. T) does not lower A.
 - Raising the city by a huge elevator (intv. A) lowers T.
- Causality contains more information than observation (== static/observational data, joint distribution, CIs).
 - Both p(A)p(T|A) ($A \rightarrow T$) and p(T)p(A|T) ($T \rightarrow A$) can describe p(A,T),
 - but they give different outcomes under intervention.

As a language of causality

• Pearl's surgery: describing intervention.

• Explaining spurious correlation:

As a language of causality

• **Causal inference**: estimate causal effect $\mathbb{E}[Y|do(t=1)] - \mathbb{E}[Y|do(t=0)]$.

- Under some assumptions, it is identifiable from observation [IW09, Pearl15].
- Causal discovery: recover the causal DAG from observation.
 - Constraint-based (e.g., PC alg. [SG91]): Cls could recover some structures (e.g., $A \perp B$, $A \mid \perp B \mid C \implies A \rightarrow C \leftarrow B$).
 - Score-based (i.e., likelihood-based): some DAGs could better fit observation data.
 - Additive noise assumption: a function class restriction makes identifiability.

- For symmetric relations (e.g., image pixels), it is unnatural to assign a direction.
 - Side effect: there would be undesired or arbitrary CI assertions.
- Represent the relation by an **undirected** graph.
 - Synonyms: Markov random field, energy-based model.
 - **d-separation**: every path between A and B contains a node in **S**.
 - Markovianess (Hammersley-Clifford theorem):
 p satisfies graph CI properties if it factorizes as one term per maximal *clique* (fully connected subgraph).

Probabilistic Graphical Models

- Directed and Undirected PGMs cover different distributions.
- Not all PGMs are generative (e.g., Bayesian neural networks, conditional random fields).
- Classical PGMs do emphasize the "graph" information.

• Deep PGMs often have simple graphs, and focus on learning the edge relation:

Dependency between x and z is *probabilistic*: $(x, z) \sim p_{\theta}(x, z)$.

Directed PGM:

Undirected PGM:

$$p_{\theta}(x,z) \propto \exp(-E_{\theta}(x,z))$$

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

Directed PGMs

Bayesian models

- Model structure (*Bayesian Modeling*):
 - *Prior* p(z): *initial* belief of z.
 - Likelihood p(x|z): dependence of x on z.
- Learning: MLE.

 $\theta^* = \arg \max_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)],$ Evidence $p(x) = \int p(z, x) dz$.

• Feature/representation learning (*Bayesian Inference*):

Posterior $p(z|x) = \frac{p(z,x)}{p(x)} = \frac{p(z)p(x|z)}{\int p(z,x) dz}$ (Bayes' rule)

represents the *updated* information that observation x conveys to latent z.

Directed PGMs

Not all Bayesian models are generative:

Directed PGMs

Benefits of Bayesian models:

- Robust to small data.
- Stable training process.
- Principled and natural inference p(z|x) via Bayes' rule.
- Natural to incorporate prior knowledge:

Problem of knowledge-agnostic conditional generation:

Moustache

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)

Estimate the posterior p(z|x).

Estimate the posterior p(z|x).

- Infer unobserved variables from observation.
 - Naive Bayes: z = y.

p(y = 0|x)= $\frac{p(x|y = 0)p(y = 0)}{p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)}.$

 $f(x) = \arg \max_{y} p(y|x) \text{ achieves the lowest error}$ $\int p(y = (1 - f(x)) | x) p(x) dx.$

Estimate the posterior p(z|x).

• Extract knowledge/representation from data.

Estimate the posterior p(z|x).

• For prediction:

$$p(y^*|x^*, \{x, y\}_{\text{train}}) = \begin{cases} \int p(y^*|z, x^*) p(z|x^*, \{x, y\}_{\text{train}}) \, dz , & x, y \\ \int p(y^*|z, x^*) p(z|\{x, y\}_{\text{train}}) \, dz . & z \\ & X \to Y \end{cases}$$
 (Senerative)

Estimate the posterior p(z|x).

$$p(z|x) = \frac{p(x,z)}{|p(x)|} = \frac{p(x,z)}{|\int p(x,z) dz|}$$

Intractable!

• Variational inference (VI)

Use a *tractable* variational distribution q(z) to approximate p(z|x): $\min_{q \in Q} KL(q(z), p(z|x)).$

Tractability: known density function, or samples are easy to draw.

- Parametric VI: use a parameter ϕ to represent $q_{\phi}(z)$.
- Particle-based VI: use a set of particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z).
- Monte Carlo (MC)
 - Draw samples from p(z|x).
 - Typically done by simulating a *Markov chain* (i.e., MCMC) for tractability.

"Feed two birds with one scone."

- In model learning: $\mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(x^{(n)}).$
 - Introduce a variational distribution q(z):

 $\log p_{\theta}(x) = \mathcal{L}_{\theta}[q(z)] + \mathrm{KL}(q(z), p_{\theta}(z|x)),$ $\mathcal{L}_{\theta}[q(z)] \coloneqq \mathbb{E}_{q(z)}[\log p_{\theta}(z, x)] - \mathbb{E}_{q(z)}[\log q(z)].$

- $\mathcal{L}_{\theta}[q(z)] \leq \log p_{\theta}(x) \rightarrow \text{Evidence Lower BOund (ELBO)}!$
- $\mathcal{L}_{\theta}[q(z)]$ is easier to estimate.
- (Variational) Expectation-Maximization Algorithm:

Bayesian Inference

(a) E-step: Let $\mathcal{L}_{\theta}[q(z)] \approx \log p_{\theta}(x)$, that is $\min_{a \in O} \operatorname{KL}(q(z), p_{\theta}(z|x))$;

(b) M-step: $\max_{\theta} \mathcal{L}_{\theta}[q(z)]$.

• Classical EM: take $q(z) = p_{\theta}(z|x)$ (i.e., with exact inference). 2022/05/16 $\exists x \neq 0$ (i.e., with exact inference).

"Feed two birds with one scone."

• To do Bayesian inference by: $\min_{q \in Q} KL(q(z), p(z|x))$,

 $KL(q(z), p_{\theta}(z|x))$ is hard to compute...

Note $\log p_{\theta}(x) = \mathcal{L}_{\theta}[q(z)] + \mathrm{KL}(q(z), p_{\theta}(z|x)),$

so
$$\min_{q \in Q} \operatorname{KL}(q(z), p(z|x)) \Leftrightarrow \max_{q \in Q} \mathcal{L}_{\theta}[q(z)].$$

The ELBO $\mathcal{L}_{\theta}[q(z)] = \mathbb{E}_{q(z)}[\log p_{\theta}(z, x)] - \mathbb{E}_{q(z)}[\log q(z)]$ is easier to compute.

• Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$.

$$\max_{\phi} \left(\mathcal{L}_{\theta} [q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)} [\log p_{\theta}(z, x)] - \mathbb{E}_{q_{\phi}(z)} [\log q_{\phi}(z)] \right).$$

- For model-specifically designed $q_{\phi}(z)$, $\mathcal{L}_{\theta}[q_{\phi}(z)]$ has closed form (e.g., [SJJ96] for SBN, [BNJ03] for LDA).
- Main Challenge:
 - Q should be as large/general/flexible as possible,
 - while enables practical optimization of the ELBO.

• Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$.

$$\max_{\phi} \left(\mathcal{L}_{\theta}[q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)}[\log p_{\theta}(z, x)] - \mathbb{E}_{q_{\phi}(z)}[\log q_{\phi}(z)] \right).$$

- Explicit variational inference: specify the form of the density function $q_{\phi}(z)$.
 - [GHB12, HBWP13, RGB14]: model-agnostic $q_{\phi}(z)$ (e.g., mixture of Gaussians).
 - [RM15, KSJ+16]: define $q_{\phi}(z)$ by a flow-based generative model.
- Implicit variational inference: define $q_{\phi}(z)$ by a GAN-like generative model.
 - More flexible but more difficult to optimize.
 - Density ratio estimation: [MNG17, SSZ18a].

 $\mathcal{L}_{\theta}[q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)}[\log p_{\theta}(x|z)] - \mathbb{E}_{q_{\phi}(z)}\left[\log \frac{q_{\phi}(z)}{p(z)}\right].$

• Gradient Estimation $\nabla \log q_{\phi}(z)$: [VLBM08, LT18, SSZ18b].

 $\min_{q\in\mathcal{Q}} \mathrm{KL}(q(z), p(z|x)).$

• Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z).

To minimize KL(q(z), p(z|x)), simulate its gradient flow on the Wasserstein space.

- Wasserstein space: an abstract space of distributions.
- Wasserstein tangent vector
 ⇔ vector field.

Bayesian Inference: Variational Inference $\min_{q\in\mathcal{Q}} \mathrm{KL}(q(z), p(z|x)).$ • Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z). $V \coloneqq \operatorname{grad}_q \operatorname{KL}(q, p) = \nabla \log(q/p)$. $z^{(i)} \leftarrow z^{(i)} + \varepsilon V(z^{(i)}).$ $=\sum_{i} \left(z^{(i)} - z^{(j)} \right) K_{ij}$ $V(z^{(i)}) \approx$ for Gaussian Kernel: Repulsive force! • SVGD [LW16]: $\sum_{i} K_{ij} \nabla_{z^{(j)}} \log p(z^{(j)} | x) + \sum_{i} \nabla_{z^{(j)}} K_{ij}$. • Blob [CZW+18]: $\nabla_{z^{(i)}} \log p(z^{(i)}|x) - \frac{\sum_{j} \nabla_{z^{(i)}} K_{ij}}{\sum_{k \in I} K_{ik}} - \sum_{j} \frac{\nabla_{z^{(i)}} K_{ij}}{\sum_{k \in I} K_{ik}}$. • GFSD [LZC+19]: $\nabla_{z^{(i)}} \log p(z^{(i)}|x) - \frac{\sum_{j} \nabla_{z^{(i)}} K_{ij}}{\sum_{k} K_{ik}}$. • GFSF [LZC+19]: $\nabla_{z^{(i)}} \log p(z^{(i)}|x) + \sum_{i,k} (K^{-1})_{ik} \nabla_{z^{(j)}} K_{ki}$.

- Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z).
 - Unified view as Wasserstein gradient flow: [LZC+19].
 - Asymptotic analysis: SVGD [Liu17] ($N \rightarrow \infty, \varepsilon \rightarrow 0$).
 - Non-asymptotic analysis
 - w.r.t *ɛ*: e.g., [RT96] (as WGF).
 - w.r.t *N*: [CMG+18, FCSS18, ZZC18].
 - Accelerating ParVIs: [LZC+19, LZZ19].
 - Add particles dynamically: [CMG+18, FCSS18].
 - Solve the Wasserstein gradient by optimal transport: [CZ17, CZW+18].
 - Manifold support space: [LZ18].

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)

- Monte Carlo
 - Directly draw (i.i.d.) samples from p(z|x).
 - Almost always impossible to directly do so (esp. w/ unnormalized p(z|x)).
- Markov Chain Monte Carlo (MCMC):

Simulate a Markov chain whose stationary distribution is p(z|x).

- Easier to implement: only requires unnormalized p(z|x) (e.g., p(z,x)).
- Asymptotically accurate.
- Drawback/Challenge: sample auto-correlation.
 Less effective than i.i.d. samples.

A fantastic MCMC animation site: <u>https://chi-feng.github.io/mcmc-demo/</u>

The Markov-chain Monte Carlo Interactive Gallery

Click on an algorithm below to view interactive demo:

- Random Walk Metropolis Hastings
- Adaptive Metropolis Hastings [1]
- Hamiltonian Monte Carlo [2]
- No-U-Turn Sampler [2]
- Metropolis-adjusted Langevin Algorithm (MALA) [3]
- Hessian-Hamiltonian Monte Carlo (H2MC) [4]
- Stein Variational Gradient Descent (SVGD) [5]
- Nested Sampling with RadFriends (RadFriends-NS) [6]

View the source code on github: https://github.com/chi-feng/mcmc-demo.

Classical MCMC

• Metropolis-Hastings framework [MRR+53, Has70]:

Draw $z^* \sim q(z^*|z^{(k)})$ and take $z^{(k+1)}$ as z^* with probability $\min \left\{ 1, \frac{q(z^{(k)}|z^*)p(z^*|x)}{q(z^*|z^{(k)})p(z^{(k)}|x)} \right\},$

else take $z^{(k+1)}$ as $z^{(k)}$.

• Note that
$$\frac{p(z^*|x)}{p(z^{(k)}|x)} = \frac{p(z^*,x)}{p(z^{(k)},x)}$$
 can be evaluated.

• Proposal distribution $q(z^*|z)$: e.g., taken as $\mathcal{N}(z^*|z, \sigma^2)$.

Classical MCMC

• Gibbs sampling [GG87]:

Iteratively sample from conditional distributions, which are easier to draw:

$$\begin{aligned} z_1^{(1)} &\sim p\left(z_1 \middle| \begin{array}{c} z_2^{(0)}, z_3^{(0)}, \dots, z_d^{(0)}, x \right), \\ z_2^{(1)} &\sim p\left(z_2 \middle| z_1^{(1)}, & z_3^{(0)}, \dots, z_d^{(0)}, x \right), \\ z_3^{(1)} &\sim p\left(z_3 \middle| z_1^{(1)}, z_2^{(1)}, & \dots, z_d^{(0)}, x \right), \end{aligned}$$

$$z_{i}^{(k+1)} \sim p\left(z_{i} \middle| z_{1}^{(k+1)}, \dots, z_{i-1}^{(k+1)}, \dots, z_{i+1}^{(k)}, \dots, z_{d}^{(k)}, x\right).$$

Dynamics-based MCMC

• Simulates a jump-free continuous-time Markov process (dynamics):

$$dz = \underbrace{b(z) dt}_{\text{drift}} + \underbrace{\sqrt{2D(z)} dB_t(z)}_{\text{diffusion}}, \text{Pos. semi-def. matrix}$$
$$\Delta z = b(z)\varepsilon + \mathcal{N}(0, 2D(z)\varepsilon) + o(\varepsilon), \text{Brownian motion}$$

with appropriate b(z) and D(z) so that p(z|x) is kept stationary/invariant.

- Informative transition using gradient $\nabla_z \log p(z|x)$.
- Some are compatible with stochastic gradient (SG): more efficient.

$$\nabla_{z} \log p(z|x) = \nabla_{z} \log p(z) + \sum_{\substack{n \in \mathcal{D} \\ |\mathcal{D}|}} \nabla_{z} \log p(x^{(n)}|z),$$

$$\widetilde{\nabla}_{z} \log p(z|x) = \nabla_{z} \log p(z) + \frac{|\mathcal{D}|}{|\mathcal{S}|} \sum_{n \in \mathcal{S}} \nabla_{z} \log p(x^{(n)}|z), \mathcal{S} \subset \mathcal{D}.$$
Bayesian Inference: MCMC

Dynamics-based MCMC

- Langevin Dynamics [RS02] (compatible with SG [WT11, CDC15, TTV16]): $z^{(k+1)} = z^{(k)} + \varepsilon \nabla \log p(z^{(k)}|x) + \mathcal{N}(0, 2\varepsilon).$
- Hamiltonian Monte Carlo [DKPR87, Nea11, Bet17]

$$(incompatible \text{ with SG [CFG14, Bet15]; leap-frog integrator [CDC15]):} \\ r^{(0)} \sim \mathcal{N}(0, \Sigma), \begin{cases} r^{(k+1/2)} = r^{(k)} + (\varepsilon/2)\nabla \log p(z^{(k)}|x), \\ z^{(k+1)} = z^{(k)} + \varepsilon \Sigma^{-1} r^{(k+1/2)}, \\ r^{(k+1)} = r^{(k+1/2)} + (\varepsilon/2)\nabla \log p(z^{(k+1)}|x). \end{cases}$$

• Stochastic Gradient Hamiltonian Monte Carlo [CFG14] (compatible with SG): $\begin{cases} z^{(k+1)} = z^{(k)} + \varepsilon \Sigma^{-1} r^{(k)}, \\ r^{(k+1)} = r^{(k)} + \varepsilon \nabla \log p(z^{(k)} | x) - \varepsilon C \Sigma^{-1} r^{(k)} + \mathcal{N}(0, 2C\varepsilon). \end{cases}$

Bayesian Inference: MCMC

Dynamics-based MCMC

- Complete framework for MCMC dynamics: [MCF15].
- Interpretation on the Wasserstein space: [JKO98, LZZ19].
- Integrators and their non-asymptotic analysis (with SG): [CDC15].
- For manifold support space:
 - LD: [GC11]; HMC: [GC11, BSU12, BG13, LSSG15]; SGLD: [PT13]; SGHMC: [MCF15, LZS16]; SGNHT: [LZS16]
- Different kinetic energy (other than Gaussian):
 - Monomial Gamma [ZWC+16, ZCG+17].
- Fancy Dynamics:
 - Relativistic: [LPH+16]
 - Magnetic: [TRGT17]

Bayesian Inference: Comparison

	Parametric VI	Particle-Based VI	MCMC
Asymptotic Accuracy	No	Yes	Yes
Approximation Flexibility	Limited	Unlimited	Unlimited
Empirical Convergence Speed	High	High	Low
Particle Efficiency	(Do not apply)	High	Low
High-Dimensional Efficiency	High	Low	High

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

Topic Models

Separate global (dataset abstraction) and local (datum representation) latent variables.

清华大学-MSRA《高等机器学习》

[SG07]

Model Structure [BNJ03]:

- Data variable: Words/Documents $w = \{w_{dn}\}_{n=1:N_d, d=1:D}, w_{dn} \in \{1 \dots W\}.$
- Latent variables:
 - Global: topics $\beta = {\{\beta_k\}}_{k=1:K}, \beta_k \in \Delta^W$.
 - Local: topic proportions $\theta = \{\theta_d\}, \theta_d \in \Delta^K$, topic assignments $z = \{z_{dn}\}, z_{dn} \in \{1 \dots K\}$.
- Prior: $p(\beta_k|b) = \text{Dir}(b), p(\theta_d|a) = \text{Dir}(a), p(z_{dn}|\theta_d) = \text{Mult}(\theta_d).$
- Likelihood: $p(w_{dn}|z_{dn},\beta) = \text{Mult}(\beta_{z_{dn}}).$

Variational inference [BNJ03]:

• Take variational distribution (mean-field approximation):

$$q_{\lambda,\gamma,\phi}(\beta,\theta,z) \coloneqq \prod_{k=1}^{K} \operatorname{Dir}(\beta_{k}|\lambda_{k}) \prod_{d=1}^{D} \operatorname{Dir}(\theta_{d}|\gamma_{d}) \prod_{n=1}^{N_{d}} \operatorname{Mult}(z_{dn}|\phi_{dn}).$$

- ELBO $(\lambda, \gamma, \phi; a, b)$ is available in closed form.
- E-step: update λ , γ , ϕ by maximizing ELBO;
- M-step: update *a*, *b* by maximizing ELBO.

MCMC: Gibbs sampling [GS04]

Model structure
$$\Rightarrow p(\beta, \theta, z, w) = AB(\prod_{k,w} \beta_{kw}^{N_{kw}+b_w-1})(\prod_{d,k} \theta_{dk}^{N_{kd}+a_k-1})$$

 $\Rightarrow p(z, w) = AB(\prod_k \frac{\prod_w \Gamma(N_{kw}+b_w)}{\Gamma(N_k+W\bar{b})})(\prod_d \frac{\prod_k \Gamma(N_{kd}+a_k)}{\Gamma(N_d+K\bar{a})}).$

 $(N_{kw}: \text{#times word } w \text{ is assigned to topic } k; N_{kd}: \text{#times topic } k \text{ appears in document } d.)$

- Unacceptable cost to directly compute p(z|w) = p(z,w)/p(w).
- Use Gibbs sampling to draw from p(z|w)! $p(z_{dn} = k|z^{-dn}, w) \propto \frac{N_{kw}^{-dn} + b_w}{N_k^{-dn} + W\overline{b}} (N_{kd}^{-dn} + a_k).$
- For β and θ , use MAP estimate:

$$\hat{\beta} \coloneqq \arg \max_{\beta} \log p(\beta|w) \approx \frac{N_{kw} + b_{w}}{N_{k} + W\bar{b}},$$

$$\hat{\theta}_{dk} \coloneqq \arg \max_{\theta} \log p(\theta|w) \approx \frac{N_{kd} + a_{k}}{N_{d} + K\bar{a}}.$$
Estimated by samples of *z*

MCMC: LightLDA [YGH+15]

$$p(z_{dn} = k | z^{-dn}, w) \propto (N_{kd}^{-dn} + a_k) \frac{N_{kw}^{-dn} + b_w}{N_k^{-dn} + W\overline{b}}.$$

- Direct implementation: O(K) time.
- Amortized O(1) multinomial sampling: alias table.

- O(1) sampling: $i \sim \text{Unif}\{1, \dots, K\}, v \sim \text{Unif}[0,1], z = i \text{ if } v < v_i \text{ else } h_i$.
- O(K) time to build the Alias Table \Rightarrow Amortized O(1) time for K samples.
- What if the target changes (slightly): use Metropolis Hastings (MH) to correct.

• Dynamics-Based MCMC and Particle-Based VI: target $p(\beta|w)$. $\nabla_{\beta} \log p(\beta|w) = \mathbb{E}_{p(Z|\beta, w)} [\nabla_{\beta} \log p(\beta, Z, w)].$

 Stochastic Gradient Riemannian Langevin Dynamics [PT13], Stochastic Gradient Nose-Hoover Thermostats [DFB+14], Stochastic Gradient Riemannian Hamiltonian Monte Carlo [MCF15].

Gibbs Sampling

Closed-form known

• Accelerated particle-based VI [LZC+19, LZZ19].

Supervised Latent Dirichlet Allocation

Model structure [MB08]:

- Variational inference: similar to LDA.
- Prediction: for test document w_d ,

$$\begin{aligned} \hat{y}_d &\coloneqq \mathbb{E}_{p(y_d|w_d)}[y_d] = \eta^\top \mathbb{E}_{p(z_d|w_d)}[\bar{z}_d] \\ &\approx \eta^\top \mathbb{E}_{q(z_d|w_d)}[\bar{z}_d]. \end{aligned}$$

First do inference (find $q(z_d|w_d)$), then estimate \hat{y}_d .

Supervised Latent Dirichlet Allocation

Variational inference with posterior regularization [ZAX12]

- Regularized Bayes (RegBayes) [ZCX14]:
 - Recall: $p(z|\{x^{(n)}, y^{(n)}\})$ = $\arg\min_{q(z)} \{-\mathcal{L}[q] = \mathrm{KL}(q(z), p(z)) - \sum_{n} \mathbb{E}_{q}[\log p(x^{(n)}, y^{(n)}|z)]\}.$
 - Regularize posterior towards better prediction: $\min_{q(z)} \operatorname{KL}(q(z), p(z)) - \sum_{n} \mathbb{E}_{q}[\log p(x^{(n)}, y^{(n)}|z)] + \lambda \ell(q(z); \{x^{(n)}, y^{(n)}\}).$
- Maximum entropy discrimination LDA (MedLDA) [ZAX12]:

•
$$\ell(q; \{w^{(n)}, y^{(n)}\}) = \sum_{n} \ell_{\varepsilon} \left(y^{(n)} - \hat{y}^{(n)}(q, w^{(n)})\right)$$

 $= \sum_{n} \ell_{\varepsilon} \left(y^{(n)} - \eta^{\top} \mathbb{E}_{q(z^{(n)}|w^{(n)})}[\bar{z}^{(n)}]\right),$
where $\ell_{\varepsilon}(r) = \max\{0, |r| - \varepsilon\}$ is the hinge (max-margin) loss.

• Facilitates both prediction and topic representation.

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

More *flexible* Bayesian model using *deep learning* tools.

• Model structure (decoder) [KW14]:

 $z_d \sim p(z_d) = \mathcal{N}(z_d|0, I),$ $x_d \sim p_{\theta}(x_d|z_d) = \mathcal{N}(x_d|\mu_{\theta}(z_d), \Sigma_{\theta}(z_d)),$ where $\mu_{\theta}(z_d)$ and $\Sigma_{\theta}(z_d)$ are modeled by neural networks.

• Variational inference (encoder) [KW14]:

 $q_{\phi}(z|x) \coloneqq \prod_{d=1}^{D} q_{\phi}(z_{d}|x_{d}) = \prod_{d=1}^{D} \mathcal{N}(z_{d}|v_{\phi}(x_{d}), \Gamma_{\phi}(x_{d})),$ where $v_{\phi}(x_{d}), \Gamma_{\phi}(x_{d})$ are also NNs

- Amortized inference: to approximate local posteriors $\{p(z_d|x_d)\}_{d=1}^D$,
 - instead of using $q_{\phi_d}(z_d)$ for each $p(z_d|x_d)$ and learning *local* parameters $\{\phi_d\}$ (like LDA),
 - use $q_{\phi}(z_d | x_d)$ and learn the *global* parameter ϕ (fast inference for unseen x_d).
- Objective: $\mathbb{E}_{\hat{p}(x_d)}[\log p_{\theta}(x_d)] \ge \mathbb{E}_{\hat{p}(x_d)}[\text{ELBO}(x_d)],$ $\text{ELBO}(x_d) = \mathbb{E}_{q_{\phi}(Z_d|X_d)} \Big[\log p_{\theta}(z_d) p_{\theta}(x_d|Z_d) - \log q_{\phi}(Z_d|X_d) \Big].$

• Variational inference (encoder) [KW14]:

 $q_{\phi}(z|x) \coloneqq \prod_{d=1}^{D} q_{\phi}(z_d|x_d) = \prod_{d=1}^{D} \mathcal{N}(z_d|\nu_{\phi}(x_d), \Gamma_{\phi}(x_d)),$

where $v_{\phi}(x_d)$, $\Gamma_{\phi}(x_d)$ are also NNs. ELBO $(x_d) = \mathbb{E}_{q_{\phi}(z_d|x_d)} [\log p_{\theta}(z_d) p_{\theta}(x_d|z_d) - \log q_{\phi}(z_d|x_d)].$

• Gradient estimation with the *reparameterization trick*:

 $z_d \sim q_{\phi}(z_d|x_d) \iff z_d = g_{\phi}(x_d,\epsilon) \coloneqq v_{\phi}(x_d) + \epsilon \sqrt{\Gamma_{\phi}(x_d)}, \epsilon \sim q(\epsilon) \coloneqq \mathcal{N}(\epsilon|0,I).$

- Gradient estimation: $\nabla_{\phi,\theta} \text{ELBO}(x_d) = \mathbb{E}_{q(\epsilon)} \left[\nabla_{\phi,\theta} \left(\log p_{\theta} \left(g_{\phi}(x_d, \epsilon) \right) p_{\theta} \left(x_d | g_{\phi}(x_d, \epsilon) \right) \log q_{\phi} \left(g_{\phi}(x_d, \epsilon) | x_d \right) \right) \right].$
- Smaller variance than REINFORCE-like estimator [Wil92]: $\nabla_{\phi} \mathbb{E}_{q_{\phi}} [f_{\phi}] = \mathbb{E}_{q_{\phi}} [\nabla_{\phi} f_{\phi} + f_{\phi} \nabla_{\phi} \log q_{\phi}].$

- Inference with importance-weighted ELBO [BGS15]
 - Conventional ELBO (subscript *d* omitted):

$$\mathcal{L}_{\theta}[q_{\phi}](x) \coloneqq \mathbb{E}_{q_{\phi}(z|x)}\left[\log \frac{p_{\theta}(z,x)}{q_{\phi}(z|x)}\right].$$

• A tighter lower bound:

$$\mathcal{L}_{\theta}^{(K)}[\boldsymbol{q_{\phi}}](x) \coloneqq \mathbb{E}_{\boldsymbol{z}^{(1)},\dots,\boldsymbol{z}^{(K)} \sim \text{i.i.d.} \boldsymbol{q_{\phi}}} \left[\log \frac{1}{K} \sum_{i=1}^{K} \frac{p_{\theta}(\boldsymbol{z}^{(i)}, \boldsymbol{x})}{\boldsymbol{q_{\phi}}(\boldsymbol{z}^{(i)} | \boldsymbol{x})} \right].$$

Ordering relation:

$$\mathcal{L}_{\theta} \Big[\boldsymbol{q}_{\phi} \Big] (x) = \mathcal{L}_{\theta}^{(1)} \Big[\boldsymbol{q}_{\phi} \Big] (x) \le \mathcal{L}_{\theta}^{(2)} \Big[\boldsymbol{q}_{\phi} \Big] (x) \le \dots \le \mathcal{L}_{\theta}^{(\infty)} \Big[\boldsymbol{q}_{\phi} \Big] (x) = \log p_{\theta}(x)$$

• SUMO [LBN+19]: unbiased estimate of $\mathcal{L}_{\theta}^{(\infty)}[q_{\phi}](x)$.

32158819 53281312 72852523 81014710 68223730 48148966 09279428 51939099 68191065 57841697

If $\frac{p(z,x)}{z}$

is bounded.

- Semi-supervised VAE [KMRW14, M2]
 - For labeled data:
 - Required encoder: $q_{\phi}(z_d | x_d, y_d)$.

- Objective: $\mathbb{E}_{\hat{p}(x_d, y_d)}[\log p_{\theta}(x_d, y_d)] \ge \mathbb{E}_{\hat{p}(x_d, y_d)}[\text{ELBO}(x_d, y_d)], \square$ $\text{ELBO}(x_d, y_d) = \mathbb{E}_{q_{\phi}(z_d|x_d, y_d)}[\log p_{\theta}(z_d)p_{\theta}(y_d)p_{\theta}(x_d|z_d, y_d) - \log q_{\phi}(z_d|x_d, y_d)].$
- For unlabeled data:
 - Required encoder: $q_{\phi}(y_d, z_d | x_d) = q_{\phi}(y_d | x_d) q_{\phi}(z_d | x_d, y_d)$.
 - Objective: $\mathbb{E}_{\hat{p}(x_d)}[\log p_{\theta}(x_d)] \ge \mathbb{E}_{\hat{p}(x_d)}[\text{ELBO}(x_d)],$ $\text{ELBO}(x_d) = \mathbb{E}_{q_{\phi}(y_d, z_d | x_d)}[\log p_{\theta}(z_d) p_{\theta}(y_d) p_{\theta}(x_d | z_d, y_d) - \log q_{\phi}(y_d, z_d | x_d)]$ $= \mathbb{E}_{q_{\phi}(y_d | x_d)}[\text{ELBO}(x_d, y_d) - \log q_{\phi}(y_d | x_d)].$
- For prediction: use $q_{\phi}(y_d|x_d)$.

- Conditional VAE [SYL15]
 - Let the generation of (z_d, y_d) conditioned on x_d (so it is not generative).

- Model: $p_{\theta}(z_d, y_d | x_d) = p_{\theta}(z_d | x_d) p(y_d | x_d, z_d)$.
- Required encoder: $q_{\phi}(z_d | x_d, y_d)$.
- Objective: ELBO $(y_d|x_d) = \mathbb{E}_{q_{\phi}(z_d|x_d, y_d)} \left[\log p_{\theta}(z_d|x_d) p(y_d|x_d, z_d) \log q_{\phi}(z_d|x_d, y_d) \right].$
- Prediction: ancestral sampling: $z_d \sim p_{\theta}(z_d | x_d), y_d \sim p(y_d | x_d, z_d)$.
- VAE with structured prior
 - [LWZZ18] mixture of Gaussian, state-space model.
 - [KSDV18] Causal network.
 - [PHN+20] energy-based prior.

- Learning disentangled representation
 - InfoGAN [CDH+16]: max mutual_info(part_of_*z*, generated_*x*).
 - β -VAE [HLP+17]: upscale the KL term (q(z|x) to factorized prior p(z)) in ELBO.
 - Total Correlation VAE [CLG+18]: upscale the total-correlation term in a finer decomposition of ELBO.

(a) Varying c_1 on InfoGAN (Digit type)

(c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)

(d) Varying c_3 from -2 to 2 on InfoGAN (Width)

- Learning disentangled representation
 - Formal definition [HAP+18] (roughly): a class of transformations on x (holding some semantics) changes only one dimension of the representation.
 - Impossibility theorem [LBL+19]:

Theorem 1. For d > 1, let $\mathbf{z} \sim P$ denote any distribution which admits a density $p(\mathbf{z}) = \prod_{i=1}^{d} p(\mathbf{z}_i)$. Then, there exists an infinite family of bijective functions $f : \operatorname{supp}(\mathbf{z}) \rightarrow$ $\operatorname{supp}(\mathbf{z})$ such that $\frac{\partial f_i(\mathbf{u})}{\partial u_j} \neq 0$ almost everywhere for all *i* and *j* (i.e., \mathbf{z} and $f(\mathbf{z})$ are completely entangled) and $P(\mathbf{z} \leq \mathbf{u}) = P(f(\mathbf{z}) \leq \mathbf{u})$ for all $\mathbf{u} \in \operatorname{supp}(\mathbf{z})$ (i.e., they have the same marginal distribution).

- Works afterwards:
 - Weak supervision: a few labels [LTB+19], pairwise similarity [CB20], paired unsupervised data [LPR+20], rank pairing [SCK+20].
 - If the cause of z is observed, z's suff. stat. can be **identified** up to a permutation [KKM+20].

• Learning causal representation.

p(x|s,v)

- Invariance risk min. [ABGL19]: Optimal representation-based classifier is invariant.
- Causal generative model [LSW+21] (single training domain; [SWZ+21] for multiple tr. dom.): p(s, v) Model: p(s, v) q(s, v|x) • Concretive process is more likely causal (invariant than information)
 - Generative process is more likely causal/invariant than inference process.

Train:

- Domain shift comes from the change of **prior** (repr. distr.).
- Not all representation *causes* $y \rightarrow$ the *s*emantic-*v*ariation split.
- Prediction: use an independent prior (if no test data) or a newly learned prior (unlabeled test data).
- Learning: using the test-domain inf. model $q^{\perp}(s, v | x)$ or $\tilde{q}(s, v | x)$ suffices.
- **Theory**: under certain conditions, *p* a well-learned model **identifies** the semantics *s*, and the test-domain/out-of-distr. prediction error is bounded (no test data) or vanishes (unlabeled test data).

p(y|s)

- Bidirectional/Prior-free generative modeling [LTQ+21]
 - Modeling p(x, z) by specifying a prior p(z):
 (1) Hard inference. (2) Manifold mismatch.

(3) Posterior collapse.

p(z) ?

- For $p(x|z) = \delta_{f(z)}(x)$, insufficient determinacy (compatible $\Leftrightarrow \exists x_0 \text{ s.t. } q(f^{-1}(\{x_0\})|x_0) = 1)$.
- Algorithms are possible!

true

data

distr.

- Enforcing compatibility: min $\mathbb{E}_{p^*(x)q_{\phi}(Z|X)} \left\| \nabla_x \nabla_z^{\mathsf{T}} \log \left(\frac{p_{\theta}(x|z)}{q_{\phi}(z|x)} \right) \right\|_F^2$.
- Data-fitting: MLE: $\mathbb{E}_{p^*(x)} \left[\log p_{\theta,\phi}(x) \right] = \mathbb{E}_{p^*(x)} \left[-\log \mathbb{E}_{q_{\phi}(z'|x)} \left[1/p_{\theta}(x|z') \right] \right].$
- Data gen.: MCMC: $\Delta x^{(t)} = \varepsilon \nabla_{x^{(t)}} \log \frac{p_{\theta}(x^{(t)}|z^{(t)})}{q_{\phi}(z^{(t)}|x^{(t)})} + \sqrt{2\varepsilon} \eta^{(t)}, \text{ where } z^{(t)} \sim q_{\phi}(z|x^{(t)}), \eta^{(t)} \sim \mathcal{N}(0, I).$

- Parametric Variational Inference: towards more flexible approximations.
 - Explicit VI:

Normalizing flows [RM15, KSJ+16].

• Implicit VI:

Adversarial Auto-Encoder [MSJ+15], Adversarial Variational Bayes [MNG17], Wasserstein Auto-Encoder [TBGS17], [SSZ18a], [LT18], [SSZ18b].

- MCMC [LTL17] and Particle-Based VI [FWL17, PGH+17]:
 - Train the encoder as a sample generator.
 - Amortize the update on samples to ϕ .

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

Specify $p_{\theta}(x, z)$ by an energy function $E_{\theta}(x, z)$: $p_{\theta}(x, z) = \frac{1}{Z_{\theta}} \exp(-E_{\theta}(x, z)), Z_{\theta} = \int \exp(-E_{\theta}(x', z')) dx' dz'.$ $x = \int \exp(-E_{\theta}(x, z)) dx' dz'$

- Only correlation and no causality: p(x, z) is either p(z)p(x|z) or p(x)p(z|x).
- + Flexible and simple in modeling dependency.
- Harder to learn and generate than directed PGMs.
 - Learning: even $p_{\theta}(x, z)$ is unavailable. $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)p_{\theta}(z|x)}[\nabla_{\theta} E_{\theta}(x, z)] + \mathbb{E}_{p_{\theta}(x, z)}[\nabla_{\theta} E_{\theta}(x, z)].$ (augmented) data distribution model distribution (Bayesian inference) (generation) • Bayesian inference: generally same as directed PGMs.
 - Generation: rely on MCMC or training a generator.

• Learning: $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)p_{\theta}(z|x)}[\nabla_{\theta} E_{\theta}(x,z)] + \mathbb{E}_{p_{\theta}(x,z)}[\nabla_{\theta} E_{\theta}(x,z)].$

Bayesian Inference

• Boltzmann Machine: Gibbs sampling for both inference and generation [HS83].

$$E_{\theta}(x,z) = -x^{\top}Wz - \frac{1}{2}x^{\top}Lx - \frac{1}{2}z^{\top}Jz.$$

$$\Rightarrow$$

$$p_{\theta}(z_{j}|x,z_{-j}) = \operatorname{Bern}\left(\sigma\left(\sum_{i=1}^{D}W_{ij}x_{i} + \sum_{m\neq j}^{P}J_{jm}z_{j}\right)\right),$$

$$p_{\theta}(x_{i}|z,x_{-i}) = \operatorname{Bern}\left(\sigma\left(\sum_{j=1}^{P}W_{ij}z_{j} + \sum_{k\neq i}^{D}L_{ik}x_{k}\right)\right).$$

Generation

• Learning: $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)p_{\theta}(z|x)}[\nabla_{\theta} E_{\theta}(x,z)] + \mathbb{E}_{p_{\theta}(x,z)}[\nabla_{\theta} E_{\theta}(x,z)].$

Bayesian Inference

Generation

• Restricted Boltzmann Machine [Smo86]:

$$E_{\theta}(x,z) = -x^{\mathsf{T}}Wz + b^{(x)^{\mathsf{T}}}x + b^{(z)^{\mathsf{T}}}z.$$

• Bayesian Inference is exact:

$$p_{\theta}(z_k|x) = \operatorname{Bern}\left(\sigma\left(x^{\top}W_{k} + b_k^{(z)}\right)\right).$$

 Generation: Gibbs sampling. Iterate:

$$p_{\theta}(z_k|x) = \operatorname{Bern}\left(\sigma\left(x^{\top}W_{k}+b_k^{(z)}\right)\right),$$
$$p_{\theta}(x_k|z) = \operatorname{Bern}\left(\sigma\left(W_{k}z+b_k^{(x)}\right)\right).$$

• Learning: $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)p_{\theta}(z|x)}[\nabla_{\theta} E_{\theta}(x,z)] + \mathbb{E}_{p_{\theta}(x,z)}[\nabla_{\theta} E_{\theta}(x,z)].$

 Deep Belief Network [HOT06] (hybrid of directed and undirected)

$$p(v, h^{(1)}, ..., h^{(L)}) = p(v|h^{(1)})p(h^{(1)}|h^{(2)}) ... p(h^{(L-2)}|h^{(L-1)})p(h^{(L-1)}, h^{(L)}). = E_{W^{(1)}}(v, h^{(1)}) + \sum_{l=2}^{L} E_{W^{(l)}}(h^{(l-1)}, h^{(l)}).$$

$$= p(v|h^{(1)})p(h^{(1)}|h^{(2)}) ... p(h^{(L-2)}|h^{(L-1)})p(h^{(L-1)}, h^{(L)}).$$

$$= E_{W^{(1)}}(v, h^{(1)}) + \sum_{l=2}^{L} E_{W^{(l)}}(h^{(l-1)}, h^{(l)}).$$

• Learning: $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)p_{\theta}(z|x)}[\nabla_{\theta} E_{\theta}(x,z)] + \mathbb{E}_{p_{\theta}(x,z)}[\nabla_{\theta} E_{\theta}(x,z)].$

Bayesian Inference

Generation

• [Hin02]: estimation with k-step MCMC approximates the gradient of k-step Contrastive Divergence (CD-k):

 $CD_k \coloneqq KL(P^0 || P_{\theta}^{\infty}) - KL(P_{\theta}^k || P_{\theta}^{\infty}),$ $P^0(x) = \hat{p}(x), P_{\theta}^k(x) \coloneqq P^0(x) P_{\theta}(x^{(k)} | x).$

k-step transition of MCMC from data to model.

Deep Energy-Based Models:

No latent variable; $E_{\theta}(x)$ is modeled by a neural network. $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)}[\nabla_{\theta} E_{\theta}(x)] + \mathbb{E}_{p_{\theta}(x')}[\nabla_{\theta} E_{\theta}(x')].$

• [KB16]: learn a generator

$$x \sim q_\phi(x) \Leftrightarrow z \sim q(z), x = g_\phi(z),$$

to mimic the generation from $p_{\theta}(x)$: $\arg\min_{\phi} \operatorname{KL}(q_{\phi}, p_{\theta}) = \arg\min_{\phi} \mathbb{E}_{q(z)} \left[E_{\theta} \left(g_{\phi}(z) \right) \right] -$

$$\mathbb{H}[q_{\phi}]$$

approx. by batch normalization Gaussian

清华大学-MSRA《高等机器学习》

Deep Energy-Based Models:

No latent variable; $E_{\theta}(x)$ is modeled by a neural network. $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)}[\nabla_{\theta} E_{\theta}(x)] + \mathbb{E}_{p_{\theta}(x')}[\nabla_{\theta} E_{\theta}(x')].$

- [DM19]: estimate $\mathbb{E}_{p_{\theta}(x')}[\cdot]$ by samples drawn by the Langevin Dynamics $x^{(k+1)} = x^{(k)} \varepsilon \nabla_x E_{\theta}(x^{(k)}) + \mathcal{N}(0, 2\varepsilon).$
 - Replay buffer for initializing the LD chain.
 - L₂-regularization on the energy function.

Deep Energy-Based Models:

• [DM19]

ImageNet32x32 Generation

Model	Inception	FID	
CIFAR-10 Unconditional			
PixelCNN (Van Oord et al., 2016)	4.60	65.93	
PixelIQN (Ostrovski et al., 2018)	5.29	49.46	
EBM (single)	6.02	40.58	
DCGAN (Radford et al., 2016)	6.40	37.11	
WGAN + GP (Gulrajani et al., 2017)	6.50	36.4	
EBM (10 historical ensemble)	6.78	38.2	
SNGAN (Miyato et al., 2018)	8.22	21.7	
CIFAR-10 Conditional			
Improved GAN	8.09	-	
EBM (single)	8.30	37.9	
Spectral Normalization GAN	8.59	25.5	
ImageNet 32x32 Conditional			
PixelCNN	8.33	33.27	
PixelIQN	10.18	22.99	
EBM (single)	18.22	14.31	
ImageNet 128x128 Conditional			
ACGAN (Odena et al., 2017)	28.5	-	
EBM* (single)	28.6	43.7	
SNGAN	36.8	27.62	

Deep Energy-Based Models:

• Score-based methods [Hyv05]: Learn $\mathbf{s}_{\theta}(\mathbf{x})$ (represents $\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}) = -\nabla_{\mathbf{x}} E_{\theta}(\mathbf{x})$) to approx $\nabla_{\mathbf{x}} \log p_{data}(\mathbf{x})$, by min:

$$\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \|\mathbf{s}_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2} = \mathbb{E}_{p_{\text{data}}(\mathbf{x})} [\|\mathbf{s}_{\theta}(\mathbf{x})\|_{2}^{2} + 2\nabla \cdot \mathbf{s}_{\theta}(\mathbf{x})] + \text{const.},$$

Fisher divergence (p_{θ}, p_{data}) score-matching objective

- The density $p_{\text{data}}(\mathbf{x})$ is not required! Estimate the expectation by sample average.
- Data generation: run Langevin dynamics with $s_{\theta}(x)$.
- Noise Annealing Score Matching [SE19]:
 - $p_{data}(\mathbf{x})$ may concentrate on a low-dim. manifold $\Rightarrow \nabla_{\mathbf{x}} \log p_{data}(\mathbf{x})$ is ill-posed!
 - Perturb the data by noise with shrinking variance: avoid concentration on manifold. Consider $p_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x}) \coloneqq \mathcal{N}(\tilde{\mathbf{x}}|\mathbf{x}, \sigma^2 \mathbf{I}), p_{\sigma}(\tilde{\mathbf{x}}) \coloneqq \int p_{\text{data}}(\mathbf{x})p_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x}) d\mathbf{x},$ and $\sigma_{\max} = \sigma_1 > \cdots > \sigma_T = \sigma_{\min} \text{ s.t.: } p_{\sigma_{\min}}(\mathbf{x}) \approx p_{\text{data}}(\mathbf{x}).$

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Models
 - Probabilistic Graphical Models
 - Directed PGMs
 - Bayesian Inference (variational inference, MCMC)
 - Topic models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Undirected PGMs (Boltzmann machines, energy-based models)
 - Diffusion-Based Models

Diffusion-Based Models

- Gradually corrupting images into random noise is easy: Let $q(\mathbf{x}_t | \mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}), \mathbf{x}_0$ be the data variable. Then $q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\overline{\alpha}_t} \mathbf{x}_0, (1 - \overline{\alpha}_t)\mathbf{I}), \overline{\alpha}_t \coloneqq \prod_{s=1}^t (1 - \beta_t).$ $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I}) =: p(\mathbf{x}_T)$ for large T!
- The reverse process is data generation.
 - The forward path serves as a guide for recovering data from noise.
 - Training enormous layers is possible.
- Learning the reverse process:
 - Treat $(\mathbf{x}_1, \dots, \mathbf{x}_T)$ as the latent variable \mathbf{z} .
 - The forward process defines $q(\mathbf{x}_1, \dots, \mathbf{x}_T | \mathbf{x}_0) \coloneqq q(\mathbf{x}_1 | \mathbf{x}_0) \dots q(\mathbf{x}_T | \mathbf{x}_{T-1})$.
 - The reverse process defines $p_{\theta}(\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_T) \coloneqq p(\mathbf{x}_T) p_{\theta}(\mathbf{x}_{T-1} | \mathbf{x}_T) \dots p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)$.
 - Learn θ to make the posterior $p_{\theta}(\mathbf{x}_1, \dots, \mathbf{x}_T | \mathbf{x}_0)$ match $q(\mathbf{x}_1, \dots, \mathbf{x}_T | \mathbf{x}_0)$ by optimizing ELBO.

Mimics Langevin dynamics targeting std Gaussian: $x^{(t)} = x^{(t-1)} + \varepsilon \nabla \log p_{\mathcal{N}}(x^{(t-1)}) + \mathcal{N}(0, 2\varepsilon).$
Diffusion-Based Models

As a diffusion process (described by Stochastic Differential Equation) [SSK+21]:

- The forward process: discretizes Variance Preserving (VP) SDE: $d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x} dt + \sqrt{\beta(t)} d\mathbf{w}$.
- SDE theory gives the reverse process: $d\mathbf{x} = [\mathbf{f}(\mathbf{x},t) g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}}$
 - Only the score function needs to be learned:

 $\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_t \Big\{ \lambda(t) \mathbb{E}_{\mathbf{x}(0)} \mathbb{E}_{\mathbf{x}(t)} \Big[\left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) - \nabla_{\mathbf{x}(t)} \log p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0)) \right\|_2^2 \Big] \Big\}.$

- When $\mathbf{f}(\mathbf{x}, t)$ is affine (e.g., VP SDE), $p_{0t}(\mathbf{x}_t | \mathbf{x}_0)$ is a Gaussian in closed-form.
- Otherwise, $p_{0t}(\mathbf{x}_t | \mathbf{x}_0)$ is intractable. Use (sliced) score-matching objective.

Diffusion-Based Models

As a diffusion process (described by Stochastic Differential Equation) [SSK+21]:

• Relation to noise annealing score-matching:

Annealing corruption process: discretizes Variance Exploding (VE) SDE:

$$\mathbf{x}_i = \mathbf{x}_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2} \mathbf{z}_{i-1}$$

$$\mathrm{d}\mathbf{x} = \sqrt{\frac{\mathrm{d}\left[\sigma^{2}(t)\right]}{\mathrm{d}t}}\mathrm{d}\mathbf{w}$$

• Unified algorithm:

Algorithm 1 PC sampling (VE SDE)	Algorithm 2 PC sampling (VP SDE)			
1: $\mathbf{x}_N \sim \mathcal{N}(0, \sigma_{\max}^2 \mathbf{I})$ 2: for $i = N - 1$ to 0 do	1: $\mathbf{x}_N \sim \mathcal{N}(0, \mathbf{I})$ 2: for $i = N - 1$ to 0 do			
3: $\mathbf{x}'_{i} \leftarrow \mathbf{x}_{i+1} + (\sigma_{i+1}^{2} - \sigma_{i}^{2}) \mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, \sigma_{i+1})$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\sigma_{i+1}^{2} - \sigma_{i}^{2}} \mathbf{z}$	3: $\mathbf{x}'_{i} \leftarrow (2 - \sqrt{1 - \beta_{i+1}})\mathbf{x}_{i+1} + \beta_{i+1}\mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, i+1)$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\beta_{i+1}}\mathbf{z}$ Predictor			
6: for $j = 1$ to M do 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta} * (\mathbf{x}_i, \sigma_i) + \sqrt{2\epsilon_i} \mathbf{z}$	6: for $j = 1$ to M do 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta} * (\mathbf{x}_i, i) + \sqrt{2\epsilon_i} \mathbf{z}$			
9: return \mathbf{x}_0	9: return \mathbf{x}_0			

Generative Model: Summary

	Plain Gen.	Latent Variable Models						
	Autoregres- sive Models	Deterministic Generative		Probabilistic Graphical Models				
		GANs	Flow-Based	Directed	Dir.: Diffusion	Undirected	Bidirectional	
 + Easy generation + Explicit Ilh (easy learn- ing) - No natural repr. - Slow/seq. generation 	+ Easy		+ Easy	generation		- Hard generation (us	e MCMC)	
	 No Ilh (hard learning) Hard repr. Flexible model Hard model Hard model Hard model 	+ Explicit Ilh (Unnormalized IIh: + s	+ stable learning, - need expectation est.				
		 easy learning) + Easy repr. - High-dim. repr. - Hard model design 	 + Moderate repr. + Prior knowledge + Small-data robust + Describe causality 	 + Easy repr. + Allow big model - High-dim. repr. 	 Hard repr. MCMC in learning Simple dependency modeling 	 + Easy & flexible repr. + Flexible distribution 		
Co Mo De Au	lors represent: odel component rived quantity inviliary part $p_{\theta}(x)$ (x) 2022/05/16	$p(z) (z)$ $x = f_{\theta}(z)$ (neural nets) $p_{\theta}(x) (x)$	$p(z) (z)$ $x = f_{\theta}(z)$ (invertible) $p_{\theta}(x) (x)$	p(z) 之 $q_{\phi}(z x)$ $p_{\theta}(x z)$ $p_{\theta}(x)$ 之 清华大学-MSRA 《高等机器学	$p(z) z$ $q(z x)$ $q(z x)$ (fixed) $p_{\theta}(x) x$	$p_{\theta}(x,z) \propto p_{\theta}(x,z) p_{\theta}(x$	$ \begin{array}{c} z \\ q_{\phi}(z z) \\ \phi(x)z \\ 146 \end{array} $	

Questions?

- Plain Generative Models
 - Autoregressive Models
 - [Fre98] Frey, Brendan J. (1998). *Graphical models for machine learning and digital communication*. MIT press.
 - [LM11] Larochelle, H. and Murray, I. The neural autoregressive distribution estimator. In *Proceedings of the International Conference on Artificial Intelligence and Statistics*, 2011.
 - [UML14] Uria, B., Murray, I., & Larochelle, H. (2014). A deep and tractable density estimator. In *International Conference on Machine Learning* (pp. 467-475).
 - [GGML15] Germain, M., Gregor, K., Murray, I., & Larochelle, H. (2015). MADE: Masked autoencoder for distribution estimation. In *International Conference on Machine Learning* (pp. 881-889).
 - [OKK16] Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. *arXiv preprint arXiv:1601.06759*.
 - [ODZ+16] Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. *arXiv preprint arXiv:1609.03499*.

- Deterministic Generative Models
 - Generative Adversarial Networks
 - [GPM+14] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In *Advances in neural information processing systems* (pp. 2672-2680).
 - [ACB17] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In *International Conference on Machine Learning* (pp. 214-223).
 - Flow-Based Models
 - [DKB15] Dinh, L., Krueger, D., & Bengio, Y. (2015). NICE: Non-linear independent components estimation. *ICLR workshop*.
 - [DSB17] Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2017). Density estimation using real NVP. In *Proceedings of the International Conference on Learning Representations*.
 - [PPM17] Papamakarios, G., Pavlakou, T., & Murray, I. (2017). Masked autoregressive flow for density estimation. In *Advances in Neural Information Processing Systems*.
 - [KD18] Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In *Advances in Neural Information Processing Systems*.

- Deterministic Generative Models
 - Flow-Based Models
 - [KSJ+16] Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Improved Variational Inference with Inverse Autoregressive Flow. In Advances in Neural Information Processing Systems.
 - [GCB+18] Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I., & Duvenaud, D. (2018). FFJORD: Free-form continuous dynamics for scalable reversible generative models. In *Proceedings of International Conference on Learning Representations*.
 - [BGC19] Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., & Jacobsen, J. H. (2019). Invertible residual networks. In *International Conference on Machine Learning*.
 - [CBD19] Chen, R. T., Behrmann, J., Duvenaud, D., & Jacobsen, J. H. (2019). Residual Flows for Invertible Generative Modeling. In *Advances in Neural Information Processing Systems*.
 - [KC20] Kong, Z., & Chaudhuri, K. (2020). The expressive power of a class of normalizing flow models. In *International Conference on Artificial Intelligence and Statistics*.
 - [TIT+20] Teshima, T., Ishikawa, I., Tojo, K., Oono, K., Ikeda, M., & Sugiyama, M. (2020). Coupling-based invertible neural networks are universal diffeomorphism approximators. *arXiv preprint arXiv:2006.11469*.

- Bayesian Inference: Variational Inference
 - Explicit Parametric VI:
 - [SJJ96] Saul, L. K., Jaakkola, T., & Jordan, M. I. (1996). Mean field theory for sigmoid belief networks. *Journal of artificial intelligence research*, 4, 61-76.
 - [BNJ03] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. *Journal of Machine Learning Research*, 3(Jan), pp.993-1022.
 - [GHB12] Gershman, S., Hoffman, M., & Blei, D. (2012). Nonparametric variational inference. arXiv preprint arXiv:1206.4665.
 - [HBWP13] Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference. *The Journal of Machine Learning Research*, 14(1), 1303-1347.
 - [RGB14] Ranganath, R., Gerrish, S., & Blei, D. (2014). Black box variational inference. In *Artificial Intelligence and Statistics* (pp. 814-822).
 - [RM15] Rezende, D.J., & Mohamed, S. (2015). Variational inference with normalizing flows. In *Proceedings of the International Conference on Machine Learning* (pp. 1530-1538).
 - [KSJ+16] Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Improved variational inference with inverse autoregressive flow. In *Advances in neural information processing systems* (pp. 4743-4751).

- Bayesian Inference: Variational Inference
 - Implicit Parametric VI: density ratio estimation
 - [MSJ+15] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2016). Adversarial Autoencoders. In *Proceedings of the International Conference on Learning Representations*.
 - [MNG17] Mescheder, L., Nowozin, S., & Geiger, A. (2017). Adversarial variational Bayes: Unifying variational autoencoders and generative adversarial networks. In *Proceedings of the International Conference on Machine Learning* (pp. 2391-2400).
 - [Hus17] Huszár, F. (2017). Variational inference using implicit distributions. *arXiv preprint* arXiv:1702.08235.
 - [TRB17] Tran, D., Ranganath, R., & Blei, D. (2017). Hierarchical implicit models and likelihood-free variational inference. In Advances in Neural Information Processing Systems (pp. 5523-5533).
 - [SSZ18a] Shi, J., Sun, S., & Zhu, J. (2018). Kernel Implicit Variational Inference. In Proceedings of the International Conference on Learning Representations.
 - Implicit Parametric VI: gradient estimation
 - [VLBM08] Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. In *Proceedings of the 25th international conference on Machine learning* (pp. 1096-1103). ACM.
 - [LT18] Li, Y., & Turner, R. E. (2018). Gradient estimators for implicit models. In *Proceedings of the International Conference on Learning Representations*.
 - [SSZ18b] Shi, J., Sun, S., & Zhu, J. (2018). A spectral approach to gradient estimation for implicit distributions. In *Proceedings of the 35th International Conference on Machine Learning* (pp. 4651-4660).

- Bayesian Inference: Variational Inference
 - Particle-Based VI
 - [LW16] Liu, Q., & Wang, D. (2016). Stein variational gradient descent: A general purpose Bayesian inference algorithm. In *Advances In Neural Information Processing Systems* (pp. 2378-2386).
 - [Liu17] Liu, Q. (2017). Stein variational gradient descent as gradient flow. In Advances in neural information processing systems (pp. 3115-3123).
 - [CZ17] Chen, C., & Zhang, R. (2017). Particle optimization in stochastic gradient MCMC. *arXiv* preprint arXiv:1711.10927.
 - [FWL17] Feng, Y., Wang, D., & Liu, Q. (2017). Learning to Draw Samples with Amortized Stein Variational Gradient Descent. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence*.
 - [PGH+17] Pu, Y., Gan, Z., Henao, R., Li, C., Han, S., & Carin, L. (2017). VAE learning via Stein variational gradient descent. In *Advances in Neural Information Processing Systems* (pp. 4236-4245).
 - [LZ18] Liu, C., & Zhu, J. (2018). Riemannian Stein Variational Gradient Descent for Bayesian Inference. In *Proceedings of the 32nd AAAI Conference on Artificial Intelligence* (pp. 3627-3634).

- Bayesian Inference: Variational Inference
 - Particle-Based VI
 - [CMG+18] Chen, W. Y., Mackey, L., Gorham, J., Briol, F. X., & Oates, C. J. (2018). Stein points. *arXiv preprint arXiv:1803.10161*.
 - [FCSS18] Futami, F., Cui, Z., Sato, I., & Sugiyama, M. (2018). Frank-Wolfe Stein sampling. *arXiv* preprint arXiv:1805.07912.
 - [CZW+18] Chen, C., Zhang, R., Wang, W., Li, B., & Chen, L. (2018). A unified particleoptimization framework for scalable Bayesian sampling. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence*.
 - [ZZC18] Zhang, J., Zhang, R., & Chen, C. (2018). Stochastic particle-optimization sampling and the non-asymptotic convergence theory. *arXiv preprint arXiv:1809.01293*.
 - [LZC+19] Liu, C., Zhuo, J., Cheng, P., Zhang, R., Zhu, J., & Carin, L. (2019). Understanding and Accelerating Particle-Based Variational Inference. In *Proceedings of the 36th International Conference on Machine Learning* (pp. 4082-4092).

- Bayesian Inference: MCMC
 - Classical MCMC
 - [MRR+53] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953). Equation of state calculations by fast computing machines. *The Journal of Chemical Physics*, 21(6), pp.1087-1092.
 - [Has70] Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. *Biometrika*, 57(1), pp.97-109.
 - [GG87] Geman, S., & Geman, D. (1987). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. In *Readings in computer vision* (pp. 564-584).
 - [ADDJ03] Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for machine learning. *Machine learning*, *50*(1-2), 5-43.

- Bayesian Inference: MCMC
 - Dynamics-Based MCMC: full-batch
 - [Lan08] Langevin, P. (1908). Sur la théorie du mouvement Brownien. Compt. Rendus, 146, 530-533.
 - [DKPR87] Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D. (1987). Hybrid Monte Carlo. *Physics letters B*, 195(2), pp.216-222.
 - [RT96] Roberts, G. O., & Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. *Bernoulli*, 2(4), 341-363.
 - [RS02] Roberts, G.O., & Stramer, O. (2002). Langevin diffusions and Metropolis-Hastings algorithms. *Methodology and computing in applied probability*, 4(4), pp.337-357.
 - [Nea11] Neal, R.M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte Carlo, 2(11), p.2.
 - [ZWC+16] Zhang, Y., Wang, X., Chen, C., Henao, R., Fan, K., & Carin, L. (2016). Towards unifying Hamiltonian Monte Carlo and slice sampling. In *Advances in Neural Information Processing Systems* (pp. 1741-1749).
 - [TRGT17] Tripuraneni, N., Rowland, M., Ghahramani, Z., & Turner, R. (2017, August). Magnetic Hamiltonian Monte Carlo. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70* (pp. 3453-3461).
 - [Bet17] Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. *arXiv* preprint arXiv:1701.02434.

- Bayesian Inference: MCMC
 - Dynamics-Based MCMC: full-batch (manifold support)
 - [GC11] Girolami, M., & Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 73(2), 123-214.
 - [BSU12] Brubaker, M., Salzmann, M., & Urtasun, R. (2012, March). A family of MCMC methods on implicitly defined manifolds. In *Artificial intelligence and statistics* (pp. 161-172).
 - [BG13] Byrne, S., & Girolami, M. (2013). Geodesic Monte Carlo on embedded manifolds. *Scandinavian Journal of Statistics*, 40(4), 825-845.
 - [LSSG15] Lan, S., Stathopoulos, V., Shahbaba, B., & Girolami, M. (2015). Markov chain Monte Carlo from Lagrangian dynamics. *Journal of Computational and Graphical Statistics*, 24(2), 357-378.

- Bayesian Inference: MCMC
 - Dynamics-Based MCMC: stochastic gradient
 - [WT11] Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In *Proceedings of the International Conference on Machine Learning* (pp. 681-688).
 - [CFG14] Chen, T., Fox, E., & Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte Carlo. In *Proceedings of the International conference on machine learning* (pp. 1683-1691).
 - [DFB+14] Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., & Neven, H. (2014). Bayesian sampling using stochastic gradient thermostats. In *Advances in neural information processing systems* (pp. 3203-3211).
 - [Bet15] Betancourt, M. (2015). The fundamental incompatibility of scalable Hamiltonian Monte Carlo and naive data subsampling. In *International Conference on Machine Learning* (pp. 533-540).
 - [TTV16] Teh, Y. W., Thiery, A. H., & Vollmer, S. J. (2016). Consistency and fluctuations for stochastic gradient Langevin dynamics. *The Journal of Machine Learning Research*, *17*(1), 193-225.
 - [LPH+16] Lu, X., Perrone, V., Hasenclever, L., Teh, Y. W., & Vollmer, S. J. (2016). Relativistic Monte Carlo. *arXiv preprint arXiv:1609.04388*.
 - [ZCG+17] Zhang, Y., Chen, C., Gan, Z., Henao, R., & Carin, L. (2017, August). Stochastic gradient monomial Gamma sampler. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70* (pp. 3996-4005).
 - [LTL17] Li, Y., Turner, R.E., & Liu, Q. (2017). Approximate inference with amortised MCMC. *arXiv* preprint arXiv:1702.08343.

- Bayesian Inference: MCMC
 - Dynamics-Based MCMC: stochastic gradient (manifold support)
 - [PT13] Patterson, S., & Teh, Y.W. (2013). Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In *Advances in neural information processing systems* (pp. 3102-3110).
 - [MCF15] Ma, Y. A., Chen, T., & Fox, E. (2015). A complete recipe for stochastic gradient MCMC. In *Advances in Neural Information Processing Systems* (pp. 2917-2925).
 - [LZS16] Liu, C., Zhu, J., & Song, Y. (2016). Stochastic Gradient Geodesic MCMC Methods. In Advances in Neural Information Processing Systems (pp. 3009-3017).
 - Dynamics-Based MCMC: general theory
 - [JKO98] Jordan, R., Kinderlehrer, D., & Otto, F. (1998). The variational formulation of the Fokker-Planck equation. *SIAM journal on mathematical analysis*, *29*(1), 1-17.
 - [MCF15] Ma, Y. A., Chen, T., & Fox, E. (2015). A complete recipe for stochastic gradient MCMC. In Advances in Neural Information Processing Systems (pp. 2917-2925).
 - [CDC15] Chen, C., Ding, N., & Carin, L. (2015). On the convergence of stochastic gradient MCMC algorithms with high-order integrators. In *Advances in Neural Information Processing Systems* (pp. 2278-2286).
- [LZZ19] Liu, C., Zhuo, J., & Zhu, J. (2019). Understanding MCMC Dynamics as Flows on the Wasserstein Space. In *Proceedings of the 36th International Conference on Machine Learning* 2022/05/16 (pp. 4093-4103). 清华大学-MSRA《高等机器学习》 160

- Probabilistic Graphical Models
 - Directed PGM: Causality
 - [SG91] Spirtes, P., Glymour, C. (1991). An algorithm for fast recovery of sparse causal graphs. *Social Science Computer Review*. 9 (1): 62–72.
 - [Pearl09] Pearl, J. (2009). *Causality*. Cambridge university press.
 - [PJS17] Peters, J., Janzing, D., & Schölkopf, B. (2017). *Elements of causal inference: foundations and learning algorithms*. The MIT Press.
 - [IW09] Imbens, G. W. & Wooldridge, J. M. Recent developments in the econometrics of program evaluation. *Journal of economic literature*, 47(1):5–86, 2009.
 - [Pearl15] Pearl, J. Detecting latent heterogeneity. *Sociological Methods & Research*, pp. 0049124115600597, 2015.
 - [SJP+12] Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., & Mooij, J. (2012). On causal and anticausal learning. In *International Conference on Machine Learning*.

- Probabilistic Graphical Models
 - Directed PGM: Causality
 - [Sch19] Schölkopf, B. (2019). Causality for machine learning. *arXiv preprint arXiv:1911.10500*.
 - [YGL+20] Yu, K., Guo, X., Liu, L., Li, J., Wang, H., Ling, Z., & Wu, X. (2020). Causality-based feature selection: Methods and evaluations. ACM Computing Surveys (CSUR), 53(5), 1-36.
 - [LSW+21] Liu, C., Sun, X., Wang, J., Tang, H., Li, T., Qin, T., Chen, W., & Liu, T. Y. (2021). Learning Causal Semantic Representation for Out-of-Distribution Prediction. In Advances in Neural Information Processing Systems.
 - [SWZ+21] Sun, X., Wu, B., Zheng, X., Liu, C., Chen, W., Qin, T., & Liu, T. Y. (2021). Recovering Latent Causal Factor for Generalization to Distributional Shifts. In Advances in Neural Information Processing Systems.
 - Related:
 - [ABGL19] Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization. *arXiv preprint arXiv:1907.02893*.

- Probabilistic Graphical Models
 - Directed PGM: Topic Models
 - [BNJ03] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. *Journal of Machine Learning Research*, 3(Jan), pp.993-1022.
 - [GS04] Griffiths, T.L., & Steyvers, M. (2004). Finding scientific topics. *Proceedings of the National academy of Sciences*, 101 (suppl 1), pp.5228-5235.
 - [SG07] Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. *Handbook of latent semantic analysis*, 427(7), 424-440.
 - [MB08] Mcauliffe, J.D., & Blei, D.M. (2008). Supervised topic models. In Advances in neural information processing systems (pp. 121-128).
 - [ZAX12] Zhu, J., Ahmed, A., & Xing, E. P. (2012). MedLDA: maximum margin supervised topic models. *Journal of Machine Learning Research*, 13(Aug), 2237-2278.
 - [PT13] Patterson, S., & Teh, Y.W. (2013). Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In *Advances in neural information processing systems* (pp. 3102-3110).
 - [ZCX14] Zhu, J., Chen, N., & Xing, E. P. (2014). Bayesian inference with posterior regularization and applications to infinite latent SVMs. *The Journal of Machine Learning Research*, *15*(1), 1799-1847.

- Probabilistic Graphical Models
 - Directed PGM: Topic Models
 - [LARS14] Li, A.Q., Ahmed, A., Ravi, S., & Smola, A.J. (2014). Reducing the sampling complexity of topic models. In *Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 891-900).
 - [YGH+15] Yuan, J., Gao, F., Ho, Q., Dai, W., Wei, J., Zheng, X., Xing, E.P., Liu, T.Y., & Ma, W.Y. (2015). LightLDA: Big topic models on modest computer clusters. In *Proceedings of the 24th International Conference on World Wide Web* (pp. 1351-1361).
 - [CLZC16] Chen, J., Li, K., Zhu, J., & Chen, W. (2016). WarpLDA: a cache efficient o(1) algorithm for latent Dirichlet allocation. *Proceedings of the VLDB Endowment*, 9(10), pp.744-755.

- Probabilistic Graphical Models
 - Directed PGM: Variational Auto-Encoders
 - [KW14] Kingma, D.P., & Welling, M. (2014). Auto-encoding variational Bayes. In Proceedings of the International Conference on Learning Representations.
 - [KMRW14] Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semisupervised learning with deep generative models. In *Advances in neural information processing systems* (pp. 3581-3589).
 - [SLY15] Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional generative models. In *Advances in Neural Information Processing Systems*, 28, 3483-3491.
 - [GDG+15] Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., & Wierstra, D. (2015). DRAW: A recurrent neural network for image generation. In *Proceedings of the 32nd International Conference on Machine Learning*.
 - [BGS15] Burda, Y., Grosse, R., & Salakhutdinov, R. (2015). Importance weighted autoencoders. *arXiv preprint arXiv:1509.00519*.

- Probabilistic Graphical Models
 - Directed PGM: Variational Auto-Encoders
 - [DFD+18] Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J.M. (2018). Hyperspherical variational auto-encoders. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence*.
 - [MSJ+15] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2016). Adversarial Autoencoders. In *Proceedings of the International Conference on Learning Representations*.
 - [CDH+16] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In *Advances in neural information processing systems* (pp. 2172-2180).
 - [MNG17] Mescheder, L., Nowozin, S., & Geiger, A. (2017). Adversarial variational Bayes: Unifying variational autoencoders and generative adversarial networks. In *Proceedings of the International Conference on Machine Learning* (pp. 2391-2400).

• [TBGS17] Tolstikhin, I., Bousquet, O., Gelly, S., & Schoelkopf, B. (2017). Wasserstein Auto-2022/05/16 Encoders. *arXiv preprint arXi*编组元组和1558_{机器学习》} 166

- Probabilistic Graphical Models
 - Directed PGM: Variational Auto-Encoders
 - [FWL17] Feng, Y., Wang, D., & Liu, Q. (2017). Learning to Draw Samples with Amortized Stein Variational Gradient Descent. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence*.
 - [PGH+17] Pu, Y., Gan, Z., Henao, R., Li, C., Han, S., & Carin, L. (2017). VAE learning via Stein variational gradient descent. In *Advances in Neural Information Processing Systems* (pp. 4236-4245).
 - [KSDV18] Kocaoglu, M., Snyder, C., Dimakis, A. G., & Vishwanath, S. (2018). CausalGAN: Learning causal implicit generative models with adversarial training. In *Proceedings of the International Conference on Learning Representations*.
 - [LWZZ18] Li, C., Welling, M., Zhu, J., & Zhang, B. (2018). Graphical generative adversarial networks. In *Advances in Neural Information Processing Systems* (pp. 6069-6080).
 - [DW19] Dai, B., & Wipf, D. (2019). Diagnosing and Enhancing Gaussian VAE Models. In International Conference on Learning Representations.

- Probabilistic Graphical Models
 - Directed PGM: Variational Auto-Encoders
 - [LBN+19] Luo, Y., Beatson, A., Norouzi, M., Zhu, J., Duvenaud, D., Adams, R. P., & Chen, R. T. (2019). SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models. In *International Conference on Learning Representations*.
 - [PHN+20] Pang, B., Han, T., Nijkamp, E., Zhu, S. C., & Wu, Y. N. (2020). Learning Latent Space Energy-Based Prior Model. In *Advances in Neural Information Processing Systems*.
 - [LTQ+21] Liu, C., Tang, H., Qin, T., Wang, J., & Liu, T. Y. (2021). On the Generative Utility of Cyclic Conditionals. In *Advances in Neural Information Processing Systems*.

- Probabilistic Graphical Models
 - Directed PGM: Disentanglement
 - [CDH+16] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). InfoGAN: interpretable representation learning by information maximizing Generative Adversarial Nets. In *Neural Information Processing Systems*.
 - [HMP+17] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., & Lerchner, A. (2017). Beta-VAE: Learning basic visual concepts with a constrained variational framework. In *Proceedings of the International Conference on Learning Representations*.
 - [CLG+18] Chen, R. T., Li, X., Grosse, R., & Duvenaud, D. (2018). Isolating sources of disentanglement in VAEs. In *Neural Information Processing Systems*.
 - [HAP+18] Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., & Lerchner, A. (2018). Towards a definition of disentangled representations. *arXiv preprint arXiv:1812.02230*.
 - [LBL+19] Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., & Bachem, O. (2019). Challenging common assumptions in the unsupervised learning of disentangled representations. In *International Conference on Machine Learning*.

- Probabilistic Graphical Models
 - Directed PGM: Disentanglement
 - [LTB+19] Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., & Bachem, O. (2019). Disentangling Factors of Variations Using Few Labels. In *International Conference* on Learning Representations.
 - [CB20] Chen, J., & Batmanghelich, K. (2020). Weakly supervised disentanglement by pairwise similarities. In *Proceedings of the AAAI Conference on Artificial Intelligence*.
 - [LPR+20] Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., & Tschannen, M. (2020). Weakly-supervised disentanglement without compromises. In *International Conference on Machine Learning*.
 - [SCK+20] Shu, R., Chen, Y., Kumar, A., Ermon, S., & Poole, B. (2020). Weakly Supervised Disentanglement with Guarantees. In *International Conference on Learning Representations*.
 - [KKM+20] Khemakhem, I., Kingma, D., Monti, R., & Hyvarinen, A. (2020). Variational autoencoders and nonlinear ICA: A unifying framework. In *International Conference on Artificial Intelligence and Statistics*.

- Probabilistic Graphical Models
 - Undirected PGM
 - [HS83] Hinton, G., & Sejnowski, T. (1983). Optimal perceptual inference. In *IEEE Conference on Computer Vision and Pattern Recognition*.
 - [Smo86] Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In *Parallel Distributed Processing*, volume 1, chapter 6, pages 194-281. MIT Press.
 - [Hin02] Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. *Neural computation*, 14(8), 1771-1800.
 - [LCH+06] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). A tutorial on energybased learning. *Predicting structured data*, 1(0).
 - [HOT06] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. *Neural computation*, 18(7), 1527-1554.
 - [SH09] Salakhutdinov, R., & Hinton, G. (2009, April). Deep Boltzmann machines. In AISTATS (pp. 448-455).
 - [Sal15] Salakhutdinov, R. (2015). Learning deep generative models. *Annual Review of Statistics and Its Application*, 2, 361-385.
 - [KB16] Kim, T., & Bengio, Y. (2016). Deep directed generative models with energy-based probability estimation. *arXiv preprint arXiv:1606.03439*.
 - [DM19] Du, Y., & Mordatch, I. (2019). Implicit generation and generalization in energy-based models. In Advances in Neural Information Processing Systems.

- Probabilistic Graphical Models
 - Score-based methods
 - [Hyv05] Hyvärinen, A., & Dayan, P. (2005). Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(4).
 - [SE19] Song, Y., & Ermon, S. (2019). Generative Modeling by Estimating Gradients of the Data Distribution. In *Advances in Neural Information Processing Systems*.

- Probabilistic Graphical Models
 - Diffusion-based models
 - [SWMG15] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning* (pp. 2256-2265).
 - [HJA20] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. In *Advances in Neural Information Processing Systems*.
 - [SSK+21] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2021). Score-Based Generative Modeling through Stochastic Differential Equations. In *International Conference on Learning Representations*.
 - [BTHD21] De Bortoli, V., Thornton, J., Heng, J., & Doucet, A. (2021). Diffusion Schrödinger bridge with applications to score-based generative modeling. In *Advances in Neural Information Processing Systems*.
 - [DVK22] Dockhorn, T., Vahdat, A., & Kreis, K. (2022). Score-Based Generative Modeling with Critically-Damped Langevin Diffusion. In *International Conference on Learning Representations*.

- Others
 - Probabilistic Graphical Models
 - [KYD+18] Kim, T., Yoon, J., Dia, O., Kim, S., Bengio, Y., & Ahn, S. (2018). Bayesian model-agnostic meta-learning. In *Advances in Neural Information Processing Systems* (pp. 7332-7342).
 - [LST15] Lake, B.M., Salakhutdinov, R., & Tenenbaum, J.B. (2015). Human-level concept learning through probabilistic program induction. *Science*, 350(6266), pp. 1332-1338.
 - Bayesian Neural Network
 - [LG17] Li, Y., & Gal, Y. (2017). Dropout inference in Bayesian neural networks with alphadivergences. In *Proceedings of the International Conference on Machine Learning* (pp. 2052-2061).
 - Related References
 - [Wil92] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8(3-4), 229-256.
 - [HV93] Hinton, G., & Van Camp, D. (1993). Keeping neural networks simple by minimizing the description length of the weights. In *in Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory*.
 - [NJ01] Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In *Advances in neural information processing systems* (pp. 841-848).

The End