高等机器学习

-

~

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - Bayesian Inference (variational inference, MCMC)
 - Bayesian Networks
 - Topic Models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

- Generative Models:
 - Models that describe the generating process of all observations.
 - Technically, they specify p(x) (unsupervised) or p(x, y) (supervised) in principle, either explicitly or implicitly.

$$\{x^{(n)}\} = \begin{cases} 0/23456789\\ 0/23456789\\ 0/23456789\\ 0/23456789\\ 0/23456789\\ 0/23456789\\ 0/23456789 \end{cases} \sim p(x)$$

- Generative Models:
 - Models that describe the generating process of all observations.
 - Technically, they specify p(x) (unsupervised) or p(x, y) (supervised) in principle, either explicitly or implicitly.

$$\{x^{(n)}, y^{(n)}\} = \begin{cases} y^{(n)} = "0""1""2""3""4""5""6""7""8""9"\\ 0 / 2 3 4 5 6 7 8 9\\ 0 / 2 3 4 5 6 7 8 9\\ 0 / 2 3 4 5 6 7 8 9\\ 0 / 2 3 4 5 6 7 8 9\\ 0 / 2 3 4 5 6 7 8 9\\ 0 / 2 3 4 5 6 7 8 9\\ 0 / 2 3 4 5 6 7 8 9 \\ 0 / 2 3 4 5 6 7 8 \\ 0 / 2 8 / 2 8 \\ 0$$

• Non-Generative Models:

Recurrent neural

networks:

only p(

available.

Discriminative models (e.g., feedforward neural networks): only p(y|x) is available.

is

one to one

清华大学-MSRA《高等机器学习》

• Non-Generative Models:

(Img: [DFD+18])

- What can generative models do:
 - 1. Generate new data.

Generation p(x) [KW14]

Conditional Generation p(x|y) [LWZZ18]

Missing Value Imputation (Completion) $p(x_{\text{hidden}}|x_{\text{observed}})$ [OKK16]

- What can generative models do:
 - 1. Generate new data.

"the cat sat on the mat" ~ p(x): Language Model.

- What can generative models do:
 - 2. Density estimation p(x).

Anomaly Detection:

- What can generative models do:
 - 3. Draw semantic or concise representation of data x (via latent variable z).

x (documents)

23456789

5 5

567

8

"ENGINES" "ROYAL" "ARMY" "STUDY" "PARTY" "DESIGN" "PUBLIC" speed britain commander analysis act size report product queen forces space office glass health introduced sir war program judge device community

z (topics) [PT13]

z (semantic regions) [DFD+18]

清华大学-MSRA《高等机器学习》

3

3

designs

earl

general

user

justice

memory

industry

- What can generative models do:
 - 3. Draw semantic or concise representation of data x (via latent variable z).

(e) Young

(f) Male

z (semantic regions) [KD18]

x (image)

- What can generative models do:
 - 3. Draw semantic or concise representation of data x (via latent variable z).

清华大学-MSRA《高等机器学习》

• What can generative models do:

4. Supervised Learning: $\arg \max_{y^*} p(y^* | x^*, \{(x^{(n)}, y^{(n)})\}).$

- What can generative models do:
 - 4. Supervised Learning: $\arg \max_{y^*} p(y^* | x^*, \{(x^{(n)}, y^{(n)})\}, \{x^{(n)}\}).$ Semi-Supervised Learning:
 - Unlabeled data $\{x^{(n)}\}$ can be utilized to learn a better p(x, y).

Generative Model: Benefits

"What I cannot create, I do not understand."

-Richard Feynman

- Natural for generation.
- For representation learning: responsible and faithful knowledge of the data.
- For supervised learning: can leverage unlabeled data.
- For supervised learning: more data-efficient.

For logistic regression (discriminative) and naive Bayes (generative) [NJ01],

$$\epsilon_{\mathrm{Dis},N} \leq \epsilon_{\mathrm{Dis},\infty} + O\left(\sqrt{\frac{d}{N}}\right) \qquad d:$$

$$\epsilon_{\mathrm{Gen},N} \leq \epsilon_{\mathrm{Gen},\infty} + O\left(\sqrt{\frac{\log d}{N}}\right) \qquad N:$$

l: data dimension.

N: data size.

Generative Model: Taxonomy

- Plain Generative Models: Directly model p(x); no latent variable. $p_{\theta}(x)(x)$
- Latent Variable Models:
 - Deterministic Generative Models: Dependency between x and z is deterministic: $x = f_{\theta}(z)$.

• Bayesian Generative Models: Dependency between x and z is probabilistic: $(x, z) \sim p_{\theta}(x, z)$.

Generative Model: Taxonomy

- Latent Variable Models
 - Bayesian Generative Models
 - Bayesian Network (BayesNet): p(x,z) specified by p(z) and p(x|z).
 - Synonyms: Causal Networks, *Directed* Graphical Model

- Markov Random Field (MRF): p(x,z) specified by an Energy function $E_{\theta}(x,z)$: $p_{\theta}(x,z) \propto \exp(-E_{\theta}(x,z))$.
 - Synonyms: Energy-Based Model, Undirected Graphical Model

$$p_{\theta}(x,z) \propto \exp(-E_{\theta}(x,z))$$

Generative Model: Taxonomy

2019/10/10

清华大学-MSRA《高等机器学习》

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - Bayesian Inference (variational inference, MCMC)
 - Bayesian Networks
 - Topic Models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

Plain Generative Models

- Directly model p(x); no latent variable involved.
- Easy to learn (no normalization constant issue) and use (generation).
- Learning: Maximum Likelihood Estimation (MLE). $\theta^* = \arg \max_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = \arg \min_{\theta} \text{KL}(\hat{p}, p_{\theta})$ $\approx \arg \max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(x^{(n)}).$
- First example: Gaussian Mixture Model $p_{\theta}(x) = \sum_{k=1}^{K} \alpha_k \mathcal{N}(x|\mu_k, \Sigma_k),$ $\theta = (\alpha, \mu, \Sigma).$

Kullback-Leibler divergence

 $\operatorname{KL}(\hat{p}, p_{\theta}) \coloneqq \mathbb{E}_{\hat{p}(x)}[\log(\hat{p}/p_{\theta})]$

Plain Generative Models

• Autoregressive Model:

Model p(x) by each conditional $p(x_i|x_{< i})$ (*i* indices components).

- Full dependency can be restored.
- Conditionals are easier to model.
- Easy learning (MLE).
- Easy generation:

 $x \sim p(x) \Leftrightarrow x_1 \sim p(x_1), x_2 \sim p(x_2|x_1), \dots, x_d \sim p(x_d|x_1, \dots, x_{d-1}).$

But non-parallelizable.

- Fully Visible Sigmoid Belief Network [Fre98] $p(x_i|x_{< i}) = Bern(x_i|\sigma(\sum_{j < i} W_{ij}x_j))$
- Neural Autoregressive Distribution Estimator [LM11] $p(x_i|x_{< i}) = \text{Bern}(x_i|\sigma(V_{i,:}\sigma(W_{:,< i}x_{< i} + a) + b_i))$
- A typical language model:

p("the cat sat on the mat") = p(x)

 $= p(x_1 = \text{the}) \ p(\text{cat}|x_1) \ p(\text{sat}|x_{1...2}) \ p(\text{on}|x_{1...3}) \ p(\text{the}|x_{1...4}) \ p(\text{mat}|x_{1...5}) \ p(</\!/s>|x_{1...6})$

Sigmoid function

- WaveNet [ODZ+16]
 - Construct $p(x_i|x_{\leq i})$ via Causal Convolution

- PixelCNN & PixelRNN [OKK16]
 - Autoregressive structure of an image:

• PixelCNN: model conditional distributions via (masked) convolution:

$$h_i = K * x_{
$$p(x_i | x_{$$$$

- Bounded receptive field.
- Likelihood evaluation: parallel

- PixelCNN & PixelRNN [OKK16]
 - PixelRNN: model conditional distributions via recurrent connection:

$$[h_i, c_i] = \text{LSTM}\left(\overbrace{K * h_{(\lfloor i/n \rfloor n - n): \lfloor i/n \rfloor n}}^{\text{ID convolution}}, c_{i-1}, x_{i-1}\right),$$
$$p(x_i | x_{< i}) = \text{NN}(h_i).$$

- Unbounded receptive field.
- Likelihood evaluation (in-row): parallel Likelihood evaluation (inter-row): sequential

• PixelCNN & PixelRNN [OKK16]

Image Completion

Image Generation

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - Bayesian Inference (variational inference, MCMC)
 - Bayesian Networks
 - Topic Models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

Latent Variable Models

- Latent Variable:
 - Abstract knowledge of data; enables various tasks.

Manipulated Generation

Dimensionality Reduction

Latent Variable Models

- Latent Variable:
 - Compact representation of dependency.

De Finetti's Theorem (1955): if $(x_1, x_2, ...)$ are *infinitely exchangeable*, then \exists r.v. z and $p(\cdot | z)$ s.t. $\forall n$,

$$p(x_1, \dots, x_n) = \int \left(\prod_{i=1}^n p(x_i|z)\right) p(z) \, dz \, .$$

$$p\left(x_1, x_2, \dots, x_n\right) = \int_z p\left(\underbrace{z}_{x_1, x_2, \dots, x_n}\right)$$

Infinite exchangeability:

For all *n* and permutation
$$\sigma$$
, $p(x_1, \dots, x_n) = p(x_{\sigma(1)}, \dots, x_{\sigma(n)})$.

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - Bayesian Inference (variational inference, MCMC)
 - Bayesian Networks
 - Topic Models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

Generative Adversarial Nets

- Deterministic $f_{\theta}: z \mapsto x$, modeled by a neural network.
- + Flexible modeling ability.
- + Good generation performance.
- Hard to infer z of a data point x.
- Unavailable density function $p_{\theta}(x)$.
- Mode-collapse.
- Learning: $\min_{\theta} \operatorname{discr}(\hat{p}(x), p_{\theta}(x)).$
 - discr. = $KL(\hat{p}, p_{\theta}) \Longrightarrow MLE: \max_{\theta} \mathbb{E}_{\hat{p}}[\log p_{\theta}], \text{ but } p_{\theta}(x) \text{ is unavailable}!$
 - discr. = Jensen-Shannon divergence [GPM+14].
 - discr. = Wasserstein distance [ACB17].

p(z) (z) $x = f_{\theta}(z)$ (Neural Nets) x $p_{\theta}(x)$

* Generative Adversarial Nets

- $\sigma(T(x))$ is the discriminator; T implemented as a neural network.
- Expectations can be estimated by samples.

* Generative Adversarial Nets

- Learning: $\min_{\alpha} \operatorname{discr}(\hat{p}(x), p_{\theta}(x))$.
 - WGAN [ACB17]: discr. = Wasserstein distance:

- Choose ϕ as a neural network with parameter clipping.
- Benefit: d_W has more alleviative reaction to distribution difference than JS.

清华大学-MSRA《高等机器学习》

p(z)

 $x = f_{\theta}(z)$

(Neural Nets)

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - Bayesian Inference (variational inference, MCMC)
 - Bayesian Networks
 - Topic Models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

Flow-Based Generative Models

- Deterministic and invertible $f_{\theta}: z \mapsto x$.
- + Available density function!

 $p_{\theta}(x) = p\left(z = f_{\theta}^{-1}(x)\right) \begin{vmatrix} \frac{\partial f_{\theta}^{-1}}{\partial x} \end{vmatrix}$ (rule of change of variables). + Easy inference: $z = f_{\theta}^{-1}(x)$.

- Redundant representation: dim. $z = \dim x$.
- Restricted f_{θ} : deliberative design; either f_{θ} or f_{θ}^{-1} computes costly.
- Learning: $\min_{\theta} \operatorname{KL}(\hat{p}(x), p_{\theta}(x)) \Longrightarrow \operatorname{MLE}: \max_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)].$
- NICE [DKB15], RealNVP [DSB17], MAF [PPM17], GLOW [KD18].

p(z)

 $p_{\theta}(x)$

 $x = f_{\theta}(z)$

(invertible)

* Flow-Based Generative Models

- RealNVP [DSB17]
 - Building block: coupling: y = g(x),

$$\begin{cases} y_{1:d} &= x_{1:d} \\ y_{d+1:D} &= x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1:d} = y_{1:d} \\ x_{d+1:D} = (y_{d+1:D} - t(y_{1:d})) \odot \exp\big(-s(y_{1:d})\big), \end{cases}$$

where s and $t: \mathbb{R}^{D-d} \to \mathbb{R}^{D-d}$ are general functions for scale and translation.

- Jacobian Determinant: $\left|\frac{\partial g}{\partial x}\right| = \exp\left(\sum_{j=1}^{D-d} s_j(x_{1:d})\right).$
- Partitioning x using a binary mask b:

$$y = b \odot x + (1 - b) \odot \left(x \odot \exp \left(s(b \odot x) \right) + t(b \odot x) \right).$$

- * Flow-Based Generative Models
- RealNVP [DSB17]
 - Building block: squeezing: from $s \times s \times c$ to $\frac{s}{2} \times \frac{s}{2} \times 4c$:

where each f follows a "coupling-squeezing-coupling" architecture. 10/10 $\frac{10}{10}$

- * Flow-Based Generative Models
- RealNVP [DSB17]

Flow-Based Generative Models

• GLOW [KD18]

Generation Results (Interpolation)

Generation Results (Manipulation; each semantic direction = $\bar{z}_{pos} - \bar{z}_{neg}$)

(a) Smiling

(b) Pale Skin

(c) Blond Hair

(d) Narrow Eyes

(f) Male

2019/10/10

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - Bayesian Inference (variational inference, MCMC)
 - Bayesian Networks
 - Topic Models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

Bayesian Generative Models: Overview

Bayesian Networks

- Model structure (*Bayesian Modeling*):
 - *Prior* p(z): *initial* belief of z.
 - Likelihood p(x|z): dependence of x on z.
- Learning (Model Selection): MLE.

 $\theta^* = \arg \max_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)],$ Evidence $p(x) = \int p(z, x) dz$.

• Feature/representation learning (*Bayesian Inference*): *Posterior* $p(z|x) = \frac{p(z,x)}{p(x)} = \frac{p(z)p(x|z)}{\int p(z,x) dz}$ (Bayes' rule)

represents the *updated* information that observation x conveys to z.

• Generation/prediction: $z_{\text{new}} \sim p(z|x)$, $x_{\text{new}} \sim p(x|z_{\text{new}})$. 2019/10/10 $\quad \text{ act} x \in \mathbb{R}^{2019/10/10}$

Bayesian Generative Models: Overview

- Dependency between x and z is *probabilistic*: $(x, z) \sim p_{\theta}(x, z)$.
 - Bayesian Network (BayesNet): p(x,z) specified by p(z) and p(x|z).
 - Synonyms: Causal Networks, *Directed* Graphical Model.
 - Directional/Causal belief encoded:
 x is generated/caused by z, not the other way.

- Markov Random Field (MRF): p(x,z) specified by an Energy function $E_{\theta}(x,z)$: $p_{\theta}(x,z) \propto \exp(-E_{\theta}(x,z))$.
 - Synonyms: Energy-Based Model, Undirected Graphical Model.
 - Modeling the symmetric correlation.
 - Harder learning and generation.

清华大学-MSRA 《高等机器学习》

* Bayesian Generative Models: Overview

Not all Bayesian models are generative:

Bayesian Generative Models: Benefits

• Robust to small data and adversarial attack.

One-shot generation [LST15]

- Stable training process
- Principled and natural inference p(z|x) via Bayes' rule

- * Bayesian Generative Models: Benefits
- Robust to small data and adversarial attack.

One-shot generation [LST15]

- * Bayesian Generative Models: Benefits
- Robust to small data and adversarial attack.

Adversarial robustness [LG17] (non-generative case)

- * Bayesian Generative Models: Benefits
- Stable training process
- Principled and natural inference p(z|x) via Bayes' rule

Bayesian Generative Models: Benefits

• Natural to incorporate prior knowledge

Bald

Mustache

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - **Bayesian Inference** (variational inference, MCMC)
 - Bayesian Networks
 - Topic Models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

Bayesian Inference

Estimate the posterior p(z|x).

Bayesian Inference

Estimate the posterior p(z|x).

• Extract knowledge/representation from data.

* Bayesian Inference

Estimate the posterior p(z|x).

• Extract knowledge/representation from data.

* Bayesian Inference

Estimate the posterior p(z|x).

- Facilitate model learning: $\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(x^{(n)})$.
 - $p_{\theta}(x) = \int p_{\theta}(x|z)p_{\theta}(z) dz$ is *hard* to evaluate:
 - Closed-form integration is generally unavailable.
 - Numerical integration
 - Curse of dimensionality
 - Hard to optimize.
 - $\log p_{\theta}(x) = \log \mathbb{E}_{p(z)}[p_{\theta}(x|z)] \approx \log \frac{1}{N} \sum_{n} p_{\theta}(x|z^{(n)}), \{z^{(n)}\} \sim p(z).$
 - Hard for p(z) to cover regions where $p_{\theta}(x|z)$ is large.
 - $\log \frac{1}{N} \sum_{n} p_{\theta}(x|z^{(n)})$ is biased: $\mathbb{E}\left[\log \frac{1}{N} \sum_{n} p_{\theta}(x|z^{(n)})\right] \le \log \mathbb{E}\left[\frac{1}{N} \sum_{n} p_{\theta}(x|z^{(n)})\right] = \log p_{\theta}(x).$

Bayesian Inference

Estimate the posterior p(z|x).

• Facilitate model learning: $\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(x^{(n)})$. An effective and practical learning approach:

• Introduce a variational distribution q(z):

 $\log p_{\theta}(x) = \mathcal{L}_{\theta}[q(z)] + \mathrm{KL}(q(z), p_{\theta}(z|x)),$ $\mathcal{L}_{\theta}[q(z)] \coloneqq \mathbb{E}_{q(z)}[\log p_{\theta}(z, x)] - \mathbb{E}_{q(z)}[\log q(z)].$

- $\mathcal{L}_{\theta}[q(z)] \leq \log p_{\theta}(x) \rightarrow \text{Evidence Lower BOund (ELBO)!}$
- $\mathcal{L}_{\theta}[q(z)]$ is easier to estimate.
- (Variational) Expectation-Maximization Algorithm:

Bayesian Inference

(a) E-step: Let $\mathcal{L}_{\theta}[q(z)] \approx \log p_{\theta}(x), \forall \theta \Leftrightarrow \min_{q \in Q} \mathrm{KL}(q(z), p_{\theta}(z|x));$ (b) M-step: $\max_{\theta} \mathcal{L}_{\theta}[q(z)].$ * Bayesian Inference

Estimate the posterior p(z|x).

• For prediction:

$$p(y^*|x^*, x, y) = \begin{cases} \int p(y^*|z, x^*) p(z|x^*, x, y) \, dz , & (Generative) \\ \int p(y^*|z, x^*) p(z|x, y) \, dz . & (X,Y) \\ & (X \to Y) \end{cases}$$
 (Non-Generative)

* Bayesian Inference

Estimate the posterior p(z|x).

- It is a hard problem
 - Closed form of $p(z|x) \propto p(z)p(x|z)$ is generally intractable.
 - We care about *expectations* w.r.t p(z|x) (prediction, computing ELBO).
 - So that even if we know the closed form (e.g., by numerical integration), downstream tasks are still hard.
 - So that the Maximum *a Posteriori* (MAP) estimate

$$\arg\max_{z} \log p\left(z \left| \{x^{(n)}\}_{n=1}^{N} \right| = \arg\max_{z} \log p(z) + \sum_{n=1}^{N} \log p(x^{(n)}|z)$$

does not help much for Bayesian tasks.

Modeling Method	Mathematical Problem
Parametric Method	Optimization
Bayesian Method	Bayesian Inference
注化上兴和604	

λŢ

Bayesian Inference

• Variational inference (VI)

Use a *tractable* variational distribution q(z) to approximate p(z|x): $\min_{q \in Q} \text{KL}(q(z), p(z|x)).$

Tractability: known density function, or samples are easy to draw.

- Parametric VI: use a parameter ϕ to represent $q_{\phi}(z)$.
- Particle-based VI: use a set of particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z).
- Monte Carlo (MC)
 - Draw samples from p(z|x).
 - Typically by simulating a *Markov chain* (i.e., MCMC) to release requirements on p(z|x).

 $\min_{q\in\mathcal{Q}} \mathrm{KL}(q(z), p(z|x)).$

• Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$.

But $KL(q_{\phi}(z), p_{\theta}(z|x))$ is hard to compute...

Recall $\log p_{\theta}(x) = \mathcal{L}_{\theta}[q(z)] + \mathrm{KL}(q(z), p_{\theta}(z|x)),$

so
$$\min_{\phi} \operatorname{KL}\left(q_{\phi}(z), p(z|x)\right) \Leftrightarrow \max_{\phi} \mathcal{L}_{\theta}\left[q_{\phi}(z)\right].$$

The ELBO $\mathcal{L}_{\theta}[q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)}[\log p_{\theta}(z, x)] - \mathbb{E}_{q_{\phi}(z)}[\log q_{\phi}(z)]$ is easier to compute.

• For model-specifically designed $q_{\phi}(z)$, ELBO(θ, ϕ) has closed form (e.g., [SJJ96] for SBN, [BNJ03] for LDA).

 $\min_{q\in\mathcal{Q}} \mathrm{KL}(q(z), p(z|x)).$

- Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$.
 - Information theory perspective of the ELBO: Bits-Back Coding [HV93].
 - Average coding length for communicating x after communicating its code z: $\mathbb{E}_{q(z|x)}[-\log p(x|z)].$
 - Average coding length for communicating z under the bits-back coding: $\mathbb{E}_{q(Z|X)}[-\log p(z)] - \mathbb{E}_{q(Z|X)}[-\log q(z|x)].$

The second term: the receiver knowns the encoder q(z|x) that the sender uses.

• Average coding length for communicating x with the help of z:

 $\mathbb{E}_{q(z|x)}\left[-\log p(x|z) - \log p(z) + \log q(z|x)\right].$

This coincides with the negative ELBO!

Maximize ELBO = Minimize averaged coding length under the bits-back scheme.

 $\min_{q\in\mathcal{Q}} \mathrm{KL}(q(z), p(z|x)).$

- Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$. Main Challenge:
 - Q should be as large/general/flexible as possible,
 - while enables practical optimization of the ELBO.

- Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$. $\max_{\phi} \left(\mathcal{L}_{\theta}[q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)}[\log p_{\theta}(z, x)] - \mathbb{E}_{q_{\phi}(z)}[\log q_{\phi}(z)] \right).$
 - Explicit variational inference: specify the form of the density function $q_{\phi}(z)$.
 - Model-specific $q_{\phi}(z)$: [SJJ96] for SBN, [BNJ03] for LDA.
 - [GHB12, HBWP13, RGB14]: model-agnostic $q_{\phi}(z)$ (e.g., mixture of Gaussians).
 - [RM15, KSJ+16]: define $q_{\phi}(z)$ by a flow-based generative model.
 - Implicit variational inference: define $q_{\phi}(z)$ by a GAN-like generative model.
 - More flexible but more difficult to optimize.
 - Density ratio estimation: [MNG17, SSZ18a].

$$\mathcal{L}_{\theta}[q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)}[\log p_{\theta}(x|z)] - \mathbb{E}_{q_{\phi}(z)}\left[\log \frac{q_{\phi}(z)}{p(z)}\right].$$

• Gradient Estimation $\nabla \log q_{\phi}(z)$: [VLBM08, LT18, SSZ18b].

- * Bayesian Inference: Variational Inference
- Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$. $\max_{\phi} \left(\mathcal{L}_{\theta}[q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)}[\log p_{\theta}(z, x)] - \mathbb{E}_{q_{\phi}(z)}[\log q_{\phi}(z)] \right).$
 - Explicit variational inference: specify the form of the density function $q_{\phi}(z)$. To be applicable to any model (model-agnostic $q_{\phi}(z)$):
 - [GHB12]: mixture of Gaussian $q_{\phi}(z) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{N}(z | \mu_n, \sigma_n^2 I)$. Blue $= \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\mathcal{N}(\mu_n, \sigma_n^2 I)}[f(z)]$ $\approx \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\mathcal{N}(\mu_n, \sigma_n^2 I)}[\text{Taylor}_2(f, \mu_n)] = \frac{1}{N} \sum_{n=1}^{N} f(\mu_n) + \frac{\sigma_n^2}{2} \text{tr}(\nabla^2 f(\mu_n)),$ Red $\geq -\frac{1}{N} \sum_{n=1}^{N} \log \sum_{j=1}^{N} \mathcal{N}(\mu_n | \mu_j, (\sigma_n^2 + \sigma_j^2)I) + \log N.$
 - [RGB14]: mean-field $q_{\phi}(z) = \prod_{d=1}^{D} q_{\phi_d}(z_d)$.
 - $\nabla_{\theta} \mathcal{L}_{\theta} [q_{\phi}] = \mathbb{E}_{q_{\phi}(z)} [\nabla_{\theta} \log p_{\theta}(z, x)].$
 - $\nabla_{\phi} \mathcal{L}_{\theta} [q_{\phi}] = \mathbb{E}_{q_{\phi}(z)} [(\nabla_{\phi} \log q_{\phi}(z)) (\log p_{\theta}(z, x) \log q_{\phi}(z))]$

(similar to REINFORCE [Wil92]) (with variance reduction).

- * Bayesian Inference: Variational Inference
- Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$. $\max_{\phi} \left(\mathcal{L}_{\theta} [q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)} [\log p_{\theta}(z, x)] - \mathbb{E}_{q_{\phi}(z)} [\log q_{\phi}(z)] \right).$
 - Explicit variational inference: specify the form of the density function $q_{\phi}(z)$. To be more flexible and model-agnostic:
 - [RM15, KSJ+16]: define $q_{\phi}(z)$ by a generative model:

$$z \sim q_{\phi}(z) \Leftrightarrow z = g_{\phi}(\epsilon), \epsilon \sim q(\epsilon),$$

where g_{ϕ} is invertible (flow model).

Density function $q_{\phi}(z)$ is known!

$$q_{\phi}(z) = q\left(\epsilon = g_{\phi}^{-1}(z)\right) \left| \frac{\partial g_{\phi}^{-1}}{\partial z} \right|. \text{ (rule of change of variables)} \\ \mathcal{L}_{\theta}[q_{\phi}] = \mathbb{E}_{q(\epsilon)} \left[\log p_{\theta}(z, x) \left|_{z=g_{\phi}(\epsilon)} - \log q_{\phi}(z) \right|_{z=g_{\phi}(\epsilon)} \right].$$

- * Bayesian Inference: Variational Inference
- Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$. $\max_{\phi} \left(\mathcal{L}_{\theta}[q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)}[\log p_{\theta}(z, x)] - \mathbb{E}_{q_{\phi}(z)}[\log q_{\phi}(z)] \right).$
 - Implicit variational inference: define $q_{\phi}(z)$ by a generative model:

$$z \sim q_{\phi}(z) \Leftrightarrow z = g_{\phi}(\epsilon), \epsilon \sim q(\epsilon),$$

where g_{ϕ} is a general function.

- More flexible than explicit VIs.
- Samples are easy to draw, but density function $q_{\phi}(z)$ is unavailable.

•
$$\mathcal{L}_{\theta}[q_{\phi}(z)] = \mathbb{E}_{q(\epsilon)}\left[\log p_{\theta}(x|z)|_{z=g_{\phi}(\epsilon)}\right] - \mathbb{E}_{q(\epsilon)}\left[\log \frac{q_{\phi}(z)}{p(z)}|_{z=g_{\phi}(\epsilon)}\right].$$

Key Problem:

- Density Ratio Estimation $r(z) \coloneqq \frac{q_{\phi}(z)}{p(z)}$.
- Gradient Estimation $\nabla \log q(z)$.

- * Bayesian Inference: Variational Inference
- Parametric variational inference: use a parameter ϕ to represent $q_{\phi}(z)$. $\max_{\phi} \left(\mathcal{L}_{\theta} [q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)} [\log p_{\theta}(z, x)] - \mathbb{E}_{q_{\phi}(z)} [\log q_{\phi}(z)] \right).$
 - Implicit variational inference Density Ratio Estimation:
 - [MNG17]: $\log r = \arg \max_{T} \mathbb{E}_{q_{\phi}(Z)} [\log \sigma(T(Z))] + \mathbb{E}_{p(Z)} [\log (1 \sigma(T(Z)))].$ Also used in [MSJ+15, Hus17, TRB17].
 - [SSZ18a]:

$$r \approx \arg\min_{\hat{r}\in\mathcal{H}} \frac{1}{2} \mathbb{E}_p[(\hat{r}-r)^2] + \frac{\lambda}{2} \|\hat{r}\|_{\mathcal{H}}^2 \approx \frac{1}{\lambda N_q} \mathbf{1}^\top K_q - \frac{1}{\lambda N_p N_q} \mathbf{1}^\top K_{qp} \left(\frac{1}{N_p} K_{pp} + \lambda I\right)^{-1} K_p,$$

where $K_p(z)_j = K\left(z_j^{(p)}, z\right), \left(K_{qp}\right)_{ij} = K\left(z_i^{(q)}, z_j^{(p)}\right), \left\{z_i^{(q)}\right\}_{i=1}^{N_q} \sim q_{\phi}(z), \left\{z_j^{(p)}\right\}_{j=1}^{N_p} \sim p(z).$

Gradient Estimation:

• [VLBM08, LT18, SSZ18b].

 $\min_{q\in\mathcal{Q}} \mathrm{KL}(q(z), p(z|x)).$

- Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z). To minimize KL(q(z), p(z|x)), simulate its gradient flow on the Wasserstein space.
 - Wasserstein space: an abstract space of distributions.
 - Wasserstein tangent vector
 ⇔ vector field.

Bayesian Inference: Variational Inference $\min_{q\in\mathcal{Q}} \mathrm{KL}(q(z), p(z|x)).$ • Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z). $V \coloneqq \operatorname{grad}_q \operatorname{KL}(q, p) = \nabla \log(q/p)$. $z^{(i)} \leftarrow z^{(i)} + \varepsilon V(z^{(i)}).$ $=\sum_{i} (z^{(i)} - z^{(j)}) K_{ii}$ $V(z^{(i)}) \approx$ for Gaussian Kernel: **Repulsive force!** • SVGD [LW16]: $\sum_{i} K_{ij} \nabla_{z^{(j)}} \log p(z^{(j)} | x) + \sum_{i} \nabla_{z^{(j)}} K_{ij}$. • Blob [CZW+18]: $\nabla_{z^{(i)}} \log p(z^{(i)}|x) - \frac{\sum_{j} \nabla_{z^{(i)}} K_{ij}}{\sum_{k \in \mathcal{K}} K_{ik}} - \sum_{j} \frac{\nabla_{z^{(i)}} K_{ij}}{\sum_{k \in \mathcal{K}} K_{ik}}$. • GFSD [LZC+19]: $\nabla_{z^{(i)}} \log p(z^{(i)}|x) - \frac{\sum_{j} \nabla_{z^{(i)}} K_{ij}}{\sum_{k} K_{ik}}$. • GFSF [LZC+19]: $\nabla_{z^{(i)}} \log p(z^{(i)}|x) + \sum_{i,k} (K^{-1})_{ik} \nabla_{z^{(j)}} K_{ki}$.

 $\min_{q\in\mathcal{Q}} \mathrm{KL}(q(z), p(z|x)).$

- Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z). Non-parametric q: more particles, more flexible.
 - Stein Variational Gradient Descent (SVGD) [LW16]: Update the particles by a dynamics $\frac{dz_t}{dt} = V_t(z_t)$ so that KL decreases.
 - Distribution evolution: consequence of the dynamics.

$$\begin{array}{c} q_t \\ q_t \\ q_{t+\varepsilon} \\ q_{t+\varepsilon} \\ q_{t+\varepsilon} \\ q_{t+\varepsilon} \\ q_{t+\varepsilon} \\ q_{t} \\ q_t \\ q$$

 $\min_{q\in\mathcal{Q}} \mathrm{KL}(q(z), p(z|x)).$

- Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z).
 - Stein Variational Gradient Descent (SVGD) [LW16]:

Update the particles by a dynamics $\frac{dz_t}{dt} = V_t(z_t)$ so that KL decreases.

• Decrease KL:

$$V_t^* \coloneqq \arg \max_{V_t} \left\{ -\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{KL}(q_t, p) = \mathbb{E}_{q_t} \underbrace{\left[V_t \cdot \nabla \log p + \nabla \cdot V_t \right]}_{\text{Stein Operator } \mathcal{A}_p[V_t]} \right\}.$$

For tractability,

$$V_t^{\text{SVGD}} \coloneqq \max \arg \max_{\substack{V_t \in \mathcal{H}^D, \|V_t\| = 1 \\ P_{q(z')}[K(z', \cdot) \nabla_{z'} \log p(z') + \nabla_{z'} K(z', \cdot)]}} \mathbb{E}_{q(z')}[K(z', \cdot) \nabla_{z'} \log p(z') + \nabla_{z'} K(z', \cdot)].$$
Update rule: $z^{(i)} + = \varepsilon [\sum_j K_{ij} \nabla_{z^{(j)}} \log p(z^{(j)}) + \sum_j \nabla_{z^{(j)}} K_{ij}].$

$$= \sum_{j} (z^{(i)} - z^{(j)}) K_{ij}$$

for Gaussian Kernel:
Repulsive force!

- Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z).
 - Unified view as Wasserstein gradient flow (WGF) [LZC+19]: particle-based VIs approximate WGF with a *compulsory* smoothing assumption, in either of the two *equivalent* forms of *smoothing the density* (Blob, GFSD) or *smoothing functions* (SVGD, GFSF).

- Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z).
 - Acceleration on the Wasserstein space [LZC+19]:
 - Apply Riemannian Nesterov's methods to $\mathcal{P}_2(\mathcal{Z})$.

Inference for Bayesian logistic regression

Algorithm 1 The acceleration framework with Wasserstein Accelerated Gradient (WAG) and Wasserstein Nesterov's method (WNes)

- 1: WAG: select acceleration factor $\alpha > 3$; WNes: select or calculate $c_1, c_2 \in \mathbb{R}^+$ (Appendix C.2); 2: Initialize $\{x_0^{(i)}\}_{i=1}^N$ distinctly; let $y_0^{(i)} = x_0^{(i)}$; 3: for $k = 1, 2, \dots, k_{\max}$, do 4: for $i = 1, \dots, N$, do 5: Find $v(y_{k-1}^{(i)})$ by SVGD/Blob/GFSD/GFSF; 6: $x_k^{(i)} = y_{k-1}^{(i)} + \varepsilon v(y_{k-1}^{(i)})$; 7: $y_k^{(i)} = x_k^{(i)} + \begin{cases} WAG: \frac{k-1}{k}(y_{k-1}^{(i)} - x_{k-1}^{(i)}) + \frac{k+\alpha-2}{k}\varepsilon v(y_{k-1}^{(i)}); \\ WNes: c_1(c_2 - 1)(x_k^{(i)} - x_{k-1}^{(i)}); \end{cases}$ 8: end for
- 9: end for 10: Return $\{x_{k_{\max}}^{(i)}\}_{i=1}^{N}$.
* Bayesian Inference: Variational Inference

- Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z).
 - Kernel bandwidth selection:
 - Median [LW16]: median of pairwise distances of the particles.

Blob

SVGD

• HE [LZC+19]: the two approx. to $q_{t+\varepsilon}(z)$, i.e., $\tilde{q}\left(z;\left\{z^{(j)}\right\}_{j}\right) + \varepsilon \Delta_{z} \tilde{q}\left(z;\left\{z^{(j)}\right\}_{j}\right)$ (Heat Eq.) and $\tilde{q}\left(z;\left\{z^{(i)} - \varepsilon \nabla_{z^{(i)}} \log \tilde{q}\left(z^{(i)};\left\{z^{(j)}\right\}_{j}\right)\right\}_{i}\right)$ (particle evolution), should match. Median: HE:

GFSD

GFSF

Bayesian Inference: Variational Inference

- Particle-based variational inference: use particles $\{z^{(i)}\}_{i=1}^{N}$ to represent q(z).
 - Unified view as Wasserstein gradient flow: [LZC+19].
 - Asymptotic analysis: SVGD [Liu17] ($N \rightarrow \infty, \varepsilon \rightarrow 0$).
 - Non-asymptotic analysis
 - w.r.t *ɛ*: e.g., [RT96] (as WGF).
 - w.r.t *N*: [CMG+18, FCSS18, ZZC18].
 - Accelerating ParVIs: [LZC+19, LZZ19].
 - Add particles dynamically: [CMG+18, FCSS18].
 - Solve the Wasserstein gradient by optimal transport: [CZ17, CZW+18].
 - Manifold support space: [LZ18].

- Monte Carlo
 - Directly draw (i.i.d.) samples from p(z|x).
 - Almost always impossible to directly do so.
- Markov Chain Monte Carlo (MCMC):

Simulate a Markov chain whose stationary distribution is p(z|x).

- Easier to implement: only requires unnormalized p(z|x) (e.g., p(z,x)).
- Asymptotically accurate.
- Drawback/Challenge: sample auto-correlation.

A fantastic MCMC animation site: <u>https://chi-feng.github.io/mcmc-demo/</u>

The Markov-chain Monte Carlo Interactive Gallery

Click on an algorithm below to view interactive demo:

- Random Walk Metropolis Hastings
- Adaptive Metropolis Hastings [1]
- Hamiltonian Monte Carlo [2]
- No-U-Turn Sampler [2]
- Metropolis-adjusted Langevin Algorithm (MALA) [3]
- Hessian-Hamiltonian Monte Carlo (H2MC) [4]
- Stein Variational Gradient Descent (SVGD) [5]
- Nested Sampling with RadFriends (RadFriends-NS) [6]

View the source code on github: https://github.com/chi-feng/mcmc-demo.

Classical MCMC

• Metropolis-Hastings framework [MRR+53, Has70]:

Draw $z^* \sim q(z^*|z^{(k)})$ and take $z^{(k+1)}$ as z^* with probability $\min \left\{ 1, \frac{q(z^{(k)}|z^*)p(z^*|x)}{q(z^*|z^{(k)})p(z^{(k)}|x)} \right\},$

else take $z^{(k+1)}$ as $z^{(k)}$.

Proposal distribution $q(z^*|z)$: e.g., taken as $\mathcal{N}(z^*|z, \sigma^2)$.

Classical MCMC

• Gibbs sampling [GG87]:

Iteratively sample from conditional distributions, which are easier to draw:

$$\begin{aligned} z_1^{(1)} &\sim p\left(z_1 \middle| \begin{array}{c} z_2^{(0)}, z_3^{(0)}, \dots, z_d^{(0)}, x \right), \\ z_2^{(1)} &\sim p\left(z_2 \middle| z_1^{(1)}, & z_3^{(0)}, \dots, z_d^{(0)}, x \right), \\ z_3^{(1)} &\sim p\left(z_3 \middle| z_1^{(1)}, z_2^{(1)}, & \dots, z_d^{(0)}, x \right), \end{aligned}$$

$$z_i^{(k+1)} \sim p\left(z_i \middle| z_1^{(k+1)}, \dots, z_{i-1}^{(k+1)}, z_{i+1}^{(k)}, \dots, z_d^{(k)}, x\right).$$

Dynamics-based MCMC

• Simulates a jump-free continuous-time Markov process (dynamics):

$$dz = \underbrace{b(z) dt}_{\text{drift}} + \underbrace{\sqrt{2D(z)} dB_t(z)}_{\text{diffusion}}, \text{Pos. semi-def. matrix}$$
$$\Delta z = b(z)\varepsilon + \mathcal{N}(0, 2D(z)\varepsilon) + o(\varepsilon), \text{Brownian motion}$$

with appropriate b(z) and D(z) so that p(z|x) is kept stationary/invariant.

- Informative transition using gradient $\nabla_z \log p(z|x)$.
- Some are compatible with stochastic gradient (SG): more efficient.

$$\nabla_{z} \log p(z|x) = \nabla_{z} \log p(z) + \sum_{\substack{n \in \mathcal{D} \\ |\mathcal{D}|}} \nabla_{z} \log p(x^{(n)}|z),$$

$$\widetilde{\nabla}_{z} \log p(z|x) = \nabla_{z} \log p(z) + \frac{|\mathcal{D}|}{|\mathcal{S}|} \sum_{n \in \mathcal{S}} \nabla_{z} \log p(x^{(n)}|z), \mathcal{S} \subset \mathcal{D}.$$

Dynamics-based MCMC

- Langevin Dynamics [RS02] (compatible with SG [WT11, CDC15, TTV16]): $z^{(k+1)} = z^{(k)} + \varepsilon \nabla \log p(z^{(k)}|x) + \mathcal{N}(0, 2\varepsilon).$
- Hamiltonian Monte Carlo [DKPR87, Nea11, Bet17]

$$\begin{array}{l} (incompatible \text{ with SG [CFG14, Bet15]; leap-frog integrator [CDC15]):} \\ r^{(0)} \sim \mathcal{N}(0, \Sigma), \end{array} \quad \begin{cases} r^{(k+1/2)} = r^{(k)} + (\varepsilon/2) \nabla \log p(z^{(k)} | x), \\ z^{(k+1)} = z^{(k)} + \varepsilon \Sigma^{-1} r^{(k+1/2)}, \\ r^{(k+1)} = r^{(k+1/2)} + (\varepsilon/2) \nabla \log p(z^{(k+1)} | x). \end{cases}$$

• Stochastic Gradient Hamiltonian Monte Carlo [CFG14] (compatible with SG): $\begin{cases} z^{(k+1)} = z^{(k)} + \varepsilon \Sigma^{-1} r^{(k)}, \\ r^{(k+1)} = r^{(k)} + \varepsilon \nabla \log p(z^{(k)} | x) - \varepsilon C \Sigma^{-1} r^{(k)} + \mathcal{N}(0, 2C\varepsilon). \end{cases}$

Dynamics-based MCMC

• Langevin dynamics [Lan08]:

$$\mathrm{d}z = \nabla \log p \,\mathrm{d}t + \sqrt{2} \,\mathrm{d}B_t(z).$$

Algorithm (also called Metropolis Adapted Langevin Algorithm) [RS02]: $z^{(k+1)} = z^{(k)} + \varepsilon \nabla \log p(z^{(k)}|x) + \mathcal{N}(0, 2\varepsilon),$

followed by an MH step.

Dynamics-based MCMC

- Hamiltonian Dynamics: $\begin{cases} dz = \Sigma^{-1}r \, dt, \\ dr = \nabla \log p \, dt. \end{cases}$
- Algorithm: Hamiltonian Monte Carlo [DKPR87, Nea11, Bet17]

Draw
$$r^{(0)} \sim \mathcal{N}(0, \Sigma)$$
 and simulate K steps:

$$\begin{cases} r^{(k+1/2)} = r^{(k)} + (\varepsilon/2) \nabla_z \log p(z^{(k)} | x), \\ z^{(k+1)} = z^{(k)} + \varepsilon \Sigma^{-1} r^{(k+1/2)}, \\ r^{(k+1)} = r^{(k+1/2)} + (\varepsilon/2) \nabla_z \log p(z^{(k+1)} | x), \end{cases}$$

and do an MH step, for one sample of z.

- Störmer-Verlet (leap-frog) integrator:
 - Makes MH ratio close to 1.
 - Higher-order simulation error [CDC15].
- More distant exploration than LD (less auto-correlation).

Dynamics-based MCMC: using stochastic gradient (SG).

- Langevin dynamics is compatible with SG [WT11, CDC15, TTV16].
- Hamiltonian Monte Carlo is incompatible with SG [CFG14, Bet15]: the stationary distribution is changed.
- Stochastic Gradient Hamiltonian Monte Carlo [CFG14]: $\begin{cases} dz = \Sigma^{-1}r \, dt, \\ dr = \nabla \log p \, dt - C\Sigma^{-1}r \, dt + \sqrt{2C} \, dB_t(r). \end{cases}$
 - Asymptotically, stationary distribution is *p*.
 - Non-asymptotically (with Euler integrator), gradient noise is of higher-order of Brownian-motion noise [CDC15].

Dynamics-based MCMC: using stochastic gradient.

• Stochastic Gradient Nose-Hoover Thermostats [DFB+14] (scalar C > 0): $dz = \Sigma^{-1}r dt$,

$$dr = \nabla \log p \, dt - \xi r \, dt + \sqrt{2C\Sigma} \, dB_t(r),$$
$$d\xi = \left(\frac{1}{D}r^{\mathsf{T}}\Sigma^{-1}r - 1\right) \, dt.$$

• Thermostats $\xi \in \mathbb{R}$: adaptively balance the gradient noise and the Brownianmotion noise.

Dynamics-based MCMC

• Complete recipe for the dynamics [MCF15]:

For any skew-symmetric matrix Q and pos. semi-def. matrix D, the dynamics

$$dz = b(z) dt + \sqrt{2D(z)} dB_t(z),$$

$$b_i = \frac{1}{p} \sum_j \partial_j \left(p(D_{ij} + Q_{ij}) \right),$$

keeps p stationary/invariant.

- The inverse also holds:
 - Any dynamics that keeps p stationary can be cast into this form.
- If *D* is pos. def., then *p* is the unique stationary distribution.
- Integrators and their non-asymptotic analysis (with SG): [CDC15].
- MCMC dynamics as flows on the Wasserstein space: [LZZ19].

Dynamics-based MCMC

- Complete framework for MCMC dynamics: [MCF15].
- Interpretation on the Wasserstein space: [JKO98, LZZ19].
- Integrators and their non-asymptotic analysis (with SG): [CDC15].
- For manifold support space:
 - LD: [GC11]; HMC: [GC11, BSU12, BG13, LSSG15]; SGLD: [PT13]; SGHMC: [MCF15, LZS16]; SGNHT: [LZS16]
- Different kinetic energy (other than Gaussian):
 - Monomial Gamma [ZWC+16, ZCG+17].
- Fancy Dynamics:
 - Relativistic: [LPH+16]
 - Magnetic: [TRGT17]

Bayesian Inference: Comparison

	Parametric VI	Particle-Based VI	MCMC
Asymptotic Accuracy	No	Yes	Yes
Approximation Flexibility	Limited	Unlimited	Unlimited
Empirical Convergence Speed	High	High	Low
Particle Efficiency	(Do not apply)	High	Low
High-Dimensional Efficiency	High	Low	High

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - Bayesian Inference (variational inference, MCMC)
 - Bayesian Networks
 - **Topic Models** (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

Topic Models

Separate global (dataset abstraction) and local (datum representation) latent variables.

[SG07]

Model Structure [BNJ03]:

- Data variable: Words/Documents $w = \{w_{dn}\}_{n=1:N_d, d=1:D}, w_{dn} \in \{1 \dots W\}.$
- Latent variables:
 - Global: topics $\beta = {\{\beta_k\}}_{k=1:K}, \beta_k \in \Delta^W$.
 - Local: topic proportions $\theta = \{\theta_d\}, \theta_d \in \Delta^K$, topic assignments $z = \{z_{dn}\}, z_{dn} \in \{1 \dots K\}$.
- Prior: $p(\beta_k|b) = \text{Dir}(b), p(\theta_d|a) = \text{Dir}(a), p(z_{dn}|\theta_d) = \text{Mult}(\theta_d).$
- Likelihood: $p(w_{dn}|z_{dn},\beta) = \text{Mult}(\beta_{z_{dn}}).$

Variational inference [BNJ03]:

• Take variational distribution (mean-field approximation):

$$q_{\lambda,\gamma,\phi}(\beta,\theta,z) \coloneqq \prod_{k=1}^{K} \operatorname{Dir}(\beta_{k}|\lambda_{k}) \prod_{d=1}^{D} \operatorname{Dir}(\theta_{d}|\gamma_{d}) \prod_{n=1}^{N_{d}} \operatorname{Mult}(z_{dn}|\phi_{dn}).$$

- ELBO $(\lambda, \gamma, \phi; a, b)$ is available in closed form.
- E-step: update λ, γ, ϕ by maximizing ELBO;
- M-step: update *a*, *b* by maximizing ELBO.

MCMC: Gibbs sampling [GS04]

Model structure
$$\Rightarrow p(\beta, \theta, z, w) = AB \left(\prod_{k,w} \beta_{kw}^{N_{kw}+b_w-1} \right) \left(\prod_{d,k} \theta_{dk}^{N_{kd}+a_k-1} \right)$$

 $\Rightarrow p(z,w) = AB \left(\prod_k \frac{\prod_w \Gamma(N_{kw}+b_w)}{\Gamma(N_k+W\bar{b})} \right) \left(\prod_d \frac{\prod_k \Gamma(N_{kd}+a_k)}{\Gamma(N_d+K\bar{a})} \right).$

 $(N_{kw}: \text{#times word } w \text{ is assigned to topic } k; N_{kd}: \text{#times topic } k \text{ appears in document } d.)$

- Unacceptable cost to directly compute p(z|w) = p(z,w)/p(w).
- Use Gibbs sampling to draw from $p(z|w)!_{a}$

$$p(z_{dn} = k | z^{-dn}, w) \propto \frac{N_{kw}^{-dn} + b_w}{N_k^{-dn} + W\overline{b}} (N_{kd}^{-dn} + a_k).$$

• For β and θ , use MAP estimate:

$$\hat{\beta} \coloneqq \arg\max_{\beta} \log p(\beta|w) \approx \frac{N_{kw} + b_{w}}{N_{k} + W\bar{b}},$$

$$\hat{\theta}_{dk} \coloneqq \arg\max_{\theta} \log p(\theta|w) \approx \frac{N_{kd} + a_{k}}{N_{d} + K\bar{a}}.$$
 Estimated by samples of z

MCMC: Gibbs sampling [GS04]

$$= \begin{pmatrix} p(\beta, \theta, z, w) \\ \prod_{k=1}^{K} \operatorname{Dir}(\beta_{k}|b) \end{pmatrix} \left(\prod_{d=1}^{D} \operatorname{Dir}(\theta_{d}|a) \left(\prod_{n=1}^{N_{d}} \operatorname{Mult}(z_{dn}|\theta_{d}) \operatorname{Mult}(w_{dn}|\beta_{z_{dn}}) \right) \right)$$
$$= AB \left(\prod_{k,w} \beta_{kw}^{b_{w}-1} \right) \left(\prod_{d,k} \theta_{dk}^{a_{k}-1} \right) \left(\prod_{d,n} \theta_{dz_{dn}} \beta_{z_{dn}w_{dn}} \right)$$
$$= AB \left(\prod_{k,w} \beta_{kw}^{N_{kw}+b_{w}-1} \right) \left(\prod_{d,k} \theta_{dk}^{N_{kd}+a_{k}-1} \right),$$
$$\bullet A = \left(\frac{\Gamma(\Sigma_{k} a_{k})}{\prod_{k} \Gamma(a_{k})} \right)^{D}, B = \left(\frac{\Gamma(\Sigma_{w} b_{w})}{\prod_{w} \Gamma(b_{w})} \right)^{K}, \text{ where } \Gamma(\cdot) \text{ is the Gamma function.}$$

• $N_{kw} = \sum_{d=1}^{D} \sum_{n=1}^{N_d} \mathbb{I}(w_{dn} = w, z_{dn} = k)$: number of times that word w is assigned to topic k.

• $N_{kd} = \sum_{n=1}^{N_d} \mathbb{I}(z_{dn} = k)$: number of times that topic k appears in document d.

MCMC: Gibbs sampling [GS04]

$$p(\beta, \theta, z, w) = AB\left(\prod_{k, w} \beta_{kw}^{N_{kw} + b_{w} - 1}\right)\left(\prod_{d, k} \theta_{dk}^{N_{kd} + a_{k} - 1}\right),$$
$$N_{kw} = \sum_{d=1}^{D} \sum_{n=1}^{N_{d}} \mathbb{I}(w_{dn} = w, z_{dn} = k), N_{kd} = \sum_{n=1}^{N_{d}} \mathbb{I}(z_{dn} = k).$$

• β and θ can be collapsed:

$$p(z,w) = \iint p(\beta,\theta,z,w) \, d\beta \, d\theta$$

= $AB\left(\prod_{k} \frac{\prod_{w} \Gamma(N_{kw} + b_{w})}{\Gamma(N_{k} + W\bar{b})}\right) \left(\prod_{d} \frac{\prod_{k} \Gamma(N_{kd} + a_{k})}{\Gamma(N_{d} + K\bar{a})}\right).$

• Unacceptable cost to directly compute p(z|w) = p(z,w)/p(w)!

MCMC: Gibbs sampling [GS04] $p(z,w) = AB\left(\prod_{k} \frac{\prod_{w} \Gamma(N_{kw} + b_{w})}{\Gamma(N_{k} + W\bar{b})}\right) \left(\prod_{d} \frac{\prod_{k} \Gamma(N_{kd} + a_{k})}{\Gamma(N_{d} + K\bar{a})}\right).$

• Use Gibbs sampling: iteratively sample from

$$p \left(z_{11}^{(1)} | z_{12}^{(0)}, z_{13}^{(0)}, z_{14}^{(0)}, \dots, z_{DN_D}^{(0)}, w \right),$$

$$p \left(z_{12}^{(1)} | z_{11}^{(1)}, z_{13}^{(0)}, z_{14}^{(0)}, \dots, z_{DN_D}^{(0)}, w \right),$$

$$p \left(z_{13}^{(1)} | z_{11}^{(1)}, z_{12}^{(1)}, z_{14}^{(0)}, \dots, z_{DN_D}^{(0)}, w \right),$$

$$p\left(z_{dn}^{(l+1)} \middle| z_{11}^{(l+1)}, \dots, z_{d(n-1)}^{(l+1)}, \dots, z_{d(n-1)}^{(l+1)}, \dots, w\right) =: p\left(z_{dn} \middle| z^{-dn}, w\right).$$

$$p\left(z_{dn} = k \middle| z^{-dn}, w\right) \propto \frac{N_{kw}^{-dn} + b_{w}}{N_{k}^{-dn} + W\overline{b}} \left(N_{kd}^{-dn} + a_{k}\right).$$

清华大学-MSRA 《高等机器学习》

....

$$p(z,w) = AB\left(\prod_{k'} \frac{\prod_{w'} \Gamma(N_{k'w'} + b_{w'})}{\Gamma(N_{k'} + W\bar{b})}\right) \left(\prod_{d'} \frac{\prod_{k'} \Gamma(N_{k'd'} + a_{k'})}{\Gamma(N_{d'} + K\bar{a})}\right)$$
(Denote w_{dn} as w :)
$$= AB\prod_{k'} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'w'} + b_{w'})\right) \cdot \Gamma(N_{k'w}^{-dn} + \mathbb{I}(z_{dn} = k') + b_{w})}{\Gamma(N_{k'}^{-dn} + \mathbb{I}(z_{dn} = k') + W\bar{b})} \cdot \left(\prod_{d' \neq d} \frac{\prod_{k'} \Gamma(N_{k'd'} + a_{k'})}{\Gamma(N_{d'} + K\bar{a})}\right) \cdot \frac{\prod_{k'} \Gamma(N_{k'd'}^{-dn} + \mathbb{I}(z_{dn} = k') + a_{k'})}{\Gamma(N_{d} + K\bar{a})}$$

$$= AB\prod_{k'} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'w'} + b_{w'})\right) \cdot \Gamma(N_{k'w}^{-dn} + b_{w}) \cdot (N_{k'w}^{-dn} + b_{w})^{\mathbb{I}(z_{dn} = k')}}{\Gamma(N_{d} + K\bar{a})}$$

$$= AB\left[\prod_{k'} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'w'} + b_{w'})\right) \cdot \Gamma(N_{k'w}^{-dn} + w\bar{b}) \cdot (N_{k'd'}^{-dn} + a_{k'})^{\mathbb{I}(z_{dn} = k')}}{\Gamma(N_{d} + K\bar{a})}\right]$$

$$= AB\left(\prod_{d' \neq d} \frac{\prod_{k'} \Gamma(N_{k'd'} + a_{k'})}{\Gamma(N_{d'} + K\bar{a})}\right) \cdot \frac{\prod_{k'} \Gamma(N_{k'd'}^{-dn} + a_{k'}) \cdot (N_{k'd'}^{-dn} + a_{k'})^{\mathbb{I}(z_{dn} = k')}}{\Gamma(N_{d} + K\bar{a})}$$

$$= AB\left(\prod_{k'} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'w'} + b_{w'})\right) \cdot \Gamma(N_{k'w}^{-dn} + b_{w})}{\Gamma(N_{k'd'}^{-dn} + w\bar{b})}\right) \cdot \prod_{k'} \left(\frac{N_{k'd'}^{-dn} + a_{k'}}{N_{k'}^{-dn} + w\bar{b}}\right)^{\mathbb{I}(z_{dn} = k')}$$

$$= AB\left(\prod_{k'} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'w'} + b_{w'})\right) \cdot \Gamma(N_{k'd'}^{-dn} + a_{k'})}{\Gamma(N_{k'd} + K\bar{a})}\right) \cdot \prod_{k'} \left(\frac{N_{k'd'}^{-dn} + a_{k'}}{N_{k'}^{-dn} + W\bar{b}}\right)^{\mathbb{I}(z_{dn} = k')}$$

$$= AB\left(\prod_{k'} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'w'} + b_{w'})\right) \cdot \Gamma(N_{k'd'}^{-dn} + a_{k'})}{\Gamma(N_{k'd} + K\bar{a})}\right) \cdot \prod_{k'} \left(\frac{N_{k'd'}^{-dn} + a_{k'}}{N_{k'd'}^{-dn} + W\bar{b}}\right)^{\mathbb{I}(z_{dn} = k')}$$

$$= AB\left(\prod_{k' \neq d} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'd'} + a_{k'})\right)}{\Gamma(N_{k'd} + K\bar{a})}\right) \cdot \prod_{k'} \left(N_{k'd}^{-dn} + a_{k'}\right)^{\mathbb{I}(z_{dn} = k')}$$

$$= AB\left(\prod_{k' \neq d} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'd'} + a_{k'})\right)}{\Gamma(N_{k'd} + K\bar{a})}\right) \cdot \prod_{k'} \left(N_{k'd'}^{-dn} + a_{k'}\right)^{\mathbb{I}(z_{dn} = k')}$$

$$= AB\left(\prod_{k' \neq d} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'd'} + a_{k'}\right)}{\Gamma(N_{k'd} + K\bar{a})}\right) \cdot \prod_{k'} \left(N_{k'd'}^{-dn} + a_{k'}\right)^{\mathbb{I}(z_{dn} = k')}$$

$$= AB\left(\prod_{k' \neq d} \frac{\left(\prod_{w' \neq w} \Gamma(N_{k'd'} + a_{k'}\right)}{\Gamma(N_{k'd'} + K\bar{a})}\right) \cdot \prod_{k'} \left(N_{k'd'}^{-dn} + a_{k'}\right)^{\mathbb{I}(z_{dn} = k')}$$

$$= AB\left(\prod_{k' \neq$$

2019/10/10

MCMC: Gibbs sampling [GS04]

• For β , use the MAP estimate:

$$\hat{\beta} = \arg\max_{\beta} \log p(\beta|w).$$

Estimate $p(\beta|w) = \mathbb{E}_{p(z|w)}[p(\beta, z, w)]$ with one sample of z from p(z|w): $\Rightarrow \hat{\beta}_k = \frac{N_{kw} + b_w - 1}{N_k + W\overline{b} - W} \approx \frac{N_{kw} + b_w}{N_k + W\overline{b}}.$

• For θ , use the MAP estimate:

$$\widehat{\theta}_{dk} = \frac{N_{kd} + a_k - 1}{N_d + K\overline{a} - K} \approx \frac{N_{kd} + a_k}{N_d + K\overline{a}}.$$

MCMC: LightLDA [YGH+15]

$$p(z_{dn} = k | z^{-dn}, w) \propto \left(N_{kd}^{-dn} + a_k\right) \frac{N_{kw}^{-dn} + b_w}{N_k^{-dn} + W\overline{b}}.$$

- Direct implementation: O(K) time.
- Amortized O(1) multinomial sampling: alias table.

- O(1) sampling: $i \sim \text{Unif}\{1, \dots, K\}, v \sim \text{Unif}[0,1], z = i \text{ if } v < v_i \text{ else } h_i$.
- O(K) time to build the Alias Table \Rightarrow Amortized O(1) time for K samples.
- What if the target changes (slightly): use Metropolis Hastings (MH) to correct.

MCMC: LightLDA [YGH+15]

$$p(z_{dn} = k | z^{-dn}, w) \propto \left(N_{kd}^{-dn} + a_k\right) \frac{N_{kw}^{-dn} + b_w}{N_k^{-dn} + W\overline{b}},$$

• Proposal in MH:

$$q(z_{dn} = k) \propto \underbrace{(M_{kd} + a_k)}_{\text{doc-proposal}} \underbrace{\frac{M_{kw} + b_w}{M_k + W\overline{b}}}_{\text{word-proposal}}.$$

Update $M_{kd} = N_{kd}$, $M_{kw} = N_{kw}$, $M_k = N_k$ every K draws.

• Doc-proposal:

• MH ratio =
$$\frac{\left(N_{k'd}^{-dn} + a_{k'}\right)\left(N_{k'w}^{-dn} + \beta_{w}\right)\left(N_{k}^{-dn} + W\bar{b}\right)(M_{kd} + a_{k})}{\left(N_{kd}^{-dn} + a_{k}\right)\left(N_{kw}^{-dn} + \beta_{w}\right)\left(N_{k'}^{-dn} + W\bar{b}\right)\left(M_{k'd} + a_{k'}\right)}. O(1).$$

- Sample from $\propto M_{kd}$: take z_{dn} where $n \sim \text{Unif}\{1, \dots, N_d\}$. Directly O(1).
- Sample from $\propto a_k$ (dense): use Alias Table. Amortized O(1).

MCMC: LightLDA [YGH+15]

$$p(z_{dn} = k | z^{-dn}, w) \propto \left(N_{kd}^{-dn} + a_k\right) \frac{N_{kw}^{-dn} + b_w}{N_k^{-dn} + W\overline{b}},$$

• Proposal in MH:

$$q(z_{dn} = k) \propto \underbrace{(M_{kd} + a_k)}_{\text{doc-proposal}} \underbrace{\frac{M_{kw} + b_w}{M_k + W\overline{b}}}_{\text{word-proposal}}.$$

Update $M_{kd} = N_{kd}$, $M_{kw} = N_{kw}$, $M_k = N_k$ every K draws.

• Word-proposal:

• MH ratio =
$$\frac{\binom{N_{k'd}^{-dn} + a_{k'}}{(N_{kd}^{-dn} + a_k)\binom{N_{k'w}^{-dn} + \beta_w}{(N_{kw}^{-dn} + \beta_w)\binom{N_k^{-dn} + W\bar{b}}{(M_{k'w}^{-dn} + W\bar{b})(M_{k'w}^{-dn} + W\bar{b})}}. O(1).$$

•
$$\frac{M_{kw} + b_w}{M_k + W\bar{b}} = \frac{M_{kw}}{M_k + W\bar{b}} + \frac{b_w}{M_k + W\bar{b}}.$$
 Sample from either term: use Alias Table. Amortized $O(1)$.

MCMC: LightLDA [YGH+15]

• Overall procedure for Gibbs sampling (cycle proposal):

- Alternatively use word-proposal and doc-proposal: better coverage on the modes.
- For each z_{dn} , run the MH chain $L \leq K$ times and take the last sample.

MCMC: LightLDA [YGH+15]

- System implementation
 - Send the model to data:

 V_1

 $-V_2$

- V3 -

Slice

by

Slice

• Dynamics-Based MCMC and Particle-Based VI: target $p(\beta|w)$. $\nabla_{\beta} \log p(\beta|w) = \mathbb{E}_{p(Z|\beta, W)} [\nabla_{\beta} \log p(\beta, Z, W)].$

 Stochastic Gradient Riemannian Langevin Dynamics [PT13], Stochastic Gradient Nose-Hoover Thermostats [DFB+14], Stochastic Gradient Riemannian Hamiltonian Monte Carlo [MCF15].

Gibbs Sampling

Closed-form known

• Accelerated particle-based VI [LZC+19, LZZ19].

MCMC: Stochastic Gradient Riemannian Langevin Dynamics [PT13] $dx = G^{-1} \nabla \log p \ dt + \nabla \cdot G^{-1} \ dt + \mathcal{N}(0, 2G^{-1} \ dt).$

• To draw from $p(\beta|w)$,

$$\nabla_{\beta} \log p(\beta|w) = \frac{1}{p(\beta|w)} \nabla_{\beta} \int p(\beta, z|w) \, dz = \int \frac{1}{p(\beta|w)} \nabla_{\beta} p(\beta, z|w) \, dz$$
$$= \int \frac{p(\beta, z|w)}{p(\beta|w)} \frac{\nabla_{\beta} p(\beta, z|w)}{p(\beta, z|w)} \, dz = \mathbb{E}_{p(z|\beta, w)} \left[\nabla_{\beta} \log p(\beta, z, w) \right].$$

- $p(\beta, z, w)$ is available in closed form.
- $p(z|\beta, w)$ can be drawn using Gibbs sampling.
- Each β_k is on a simplex: use reparameterization to convert to the Euclidean space (that's where G comes from), e.g., $\beta_{kw} = \frac{\pi_{kw}}{\sum_w \pi_{kw}}$.

MCMC: Stochastic Gradient Riemannian Langevin Dynamics [PT13] $dx = G^{-1} \nabla \log p \ dt + \nabla \cdot G^{-1} \ dt + \mathcal{N}(0, 2G^{-1} \ dt).$

• Various parameterizations:

Parameterisation	Reduced-Mean	Reduced-Natural	Expanded-Mean	Expanded-Natural
θ	$ heta_k = \pi_k$	$\theta_k = \log \frac{\pi_k}{1 - \sum_k^{K-1} \pi_k}$	$\pi_k = \frac{ \theta_k }{\sum_{k=1} \theta_k }$	$\pi_k = \frac{\mathrm{e}^{\theta_k}}{\sum_{k=1} \mathrm{e}^{\theta_k}}$
$\nabla_{\theta} \log p(\theta \mathbf{x})$	$rac{n+lpha}{ heta} - 1rac{n_K+lpha-1}{\pi_K}$	$n + \alpha - (n + K\alpha) \pi$	$rac{n+lpha-1}{ heta}-rac{n_{\cdot}}{ heta_{\cdot}}-1$	$n + \alpha - n.\pi - \mathbf{e}^{\theta}$
$G(\theta)$	$n.\left(\operatorname{diag}(\theta)^{-1} + \frac{1}{1-\sum_k \theta_k}11^T\right)$	$\frac{1}{n}\left(\operatorname{diag}(\pi)-\pi\pi^{T}\right)$	diag $(\theta)^{-1}$	diag (e^{θ})
$G^{-1}(\theta)$	$\frac{1}{n} \left(\operatorname{diag}(\theta) - \theta \theta^T \right)$	$n.\left(\operatorname{diag}(\pi)^{-1} + \frac{1}{1-\sum_k \pi_k}11^T\right)$	diag (θ)	diag $(e^{-\theta})$
$\sum_{k=1}^{D} \left(G^{-1} \frac{\partial G}{\partial \theta_k} G^{-1} \right)_{jk}$	$K heta_j-1$	$rac{1}{\pi_j^2} - rac{K-1}{(1-\sum_k \pi_k)^2}$	-1	$e^{- heta_j}$
$\sum_{k=1}^{D} \left(G^{-1}(\theta) \right)_{jk} \operatorname{Tr} \left(G^{-1}(\theta) \frac{\partial G}{\partial \theta_k} \right)$	$K heta_j - 1$	$rac{1}{\pi_j^2} - rac{K-1}{(1-\sum_k \pi_k)^2}$	-1	$e^{- heta_j}$

Supervised Latent Dirichlet Allocation

Model structure [MB08]:

- Variational inference: similar to LDA.
- Prediction: for test document w_d,

$$\hat{y}_d \coloneqq \mathbb{E}_{p(y_d|w_d)}[y_d] = \eta^\top \mathbb{E}_{p(z_d|w_d)}[\bar{z}_d] \\ \approx \eta^\top \mathbb{E}_{q(z_d|w_d)}[\bar{z}_d].$$

First do inference (find $q(z_d|w_d)$), then estimate \hat{y}_d .

* Supervised Latent Dirichlet Allocation

Model structure [MB08]:

- Generating process:
 - Draw topics: $\beta_k \sim \text{Dir}(b), k = 1, ..., K$;
 - For each document *d*,
 - Draw topic proportion $\theta_d \sim \text{Dir}(a)$;
 - For each word *n* in document *d*,
 - Draw topic assignment $z_{dn} \sim \text{Mult}(\theta_d)$;
 - Draw word $w_{dn} \sim \text{Mult}(z_{dn})$.

• Draw the response
$$y_d \sim \mathcal{N}(\eta^{\top} \bar{z}_d, \sigma^2), \bar{z}_d \coloneqq \frac{1}{N_d} \sum_{n=1}^{N_d} z_{dn}$$
 (one-hot).
 $p(\beta, \theta, z, w, y)$
 $= \left(\prod_{k=1}^{K} \operatorname{Dir}(\beta_k | b)\right) \left(\prod_{d=1}^{D} \operatorname{Dir}\left(\prod_{n=1}^{N_d} \operatorname{Mult}(z_{dn} | \theta_d) \operatorname{Mult}(w_{dn} | \beta_{z_{dn}})\right) \mathcal{N}(y_d | \eta^{\top} \bar{z}_d, y_d)$

 σ^2)

* Supervised Latent Dirichlet Allocation

Variational inference [MB08]: similar to LDA.

• Same variational distribution $q_{\lambda,\gamma,\phi}(\beta,\theta,z) \coloneqq \prod_{k=1}^{K} \operatorname{Dir}(\beta_{k}|\lambda_{k}) \prod_{d=1}^{D} \operatorname{Dir}(\theta_{d}|\gamma_{d}) \prod_{n=1}^{n_{d}} \operatorname{Mult}(z_{dn}|\phi_{dn}).$

ELBO $(\lambda, \gamma, \phi; a, b, \eta, \sigma^2)$ is available in closed form.

- E-step: update λ, γ, ϕ by maximizing ELBO.
- M-step: update a, b, η, σ^2 by maximizing ELBO.
- Prediction: given a new document w_d , $\hat{y}_d \coloneqq \mathbb{E}_{p(y_d|w_d)}[y_d] = \eta^\top \mathbb{E}_{p(z_d|w_d)}[\bar{z}_d] \approx \eta^\top \mathbb{E}_{q(z_d|w_d)}[\bar{z}_d].$ First do inference: find $q(z_d|w_d)$ i.e. ϕ_d , then estimate \hat{y}_d .
* Supervised Latent Dirichlet Allocation

Variational inference with posterior regularization [ZAX12]

- Regularized Bayes (RegBayes) [ZCX14]:
 - Recall: $p(z|\{x^{(n)}, y^{(n)}\})$ = $\arg\min_{q(z)}\{-\mathcal{L}[q] = \mathrm{KL}(q(z), p(z)) - \sum_{n} \mathbb{E}_{q}[\log p(x^{(n)}, y^{(n)}|z)]\}.$
 - Regularize posterior towards better prediction: $\min_{q(z)} \operatorname{KL}(q(z), p(z)) - \sum_{n} \mathbb{E}_{q}[\log p(x^{(n)}, y^{(n)}|z)] + \lambda \ell(q(z); \{x^{(n)}, y^{(n)}\}).$
- Maximum entropy discrimination LDA (MedLDA) [ZAX12]:

•
$$\ell(q; \{w^{(n)}, y^{(n)}\}) = \sum_{n} \ell_{\varepsilon} \left(y^{(n)} - \hat{y}^{(n)}(q, w^{(n)})\right)$$

 $= \sum_{n} \ell_{\varepsilon} \left(y^{(n)} - \eta^{\top} \mathbb{E}_{q(Z^{(n)}|W^{(n)})}[\bar{z}^{(n)}]\right),$
where $\ell_{\varepsilon}(r) = \max\{0, |r| - \varepsilon\}$ is the hinge (max-margin) loss.

• Facilitates both prediction and topic representation.

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - Bayesian Inference (variational inference, MCMC)
 - Bayesian Networks
 - Topic Models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

More *flexible* Bayesian model using *deep learning* tools.

• Model structure (decoder) [KW14]:

 $z_d \sim p(z_d) = \mathcal{N}(z_d|0, I),$ $x_d \sim p_{\theta}(x_d|z_d) = \mathcal{N}(x_d|\mu_{\theta}(z_d), \Sigma_{\theta}(z_d)),$ where $\mu_{\theta}(z_d)$ and $\Sigma_{\theta}(z_d)$ are modeled by neural networks.

• Variational inference (encoder) [KW14]:

- Amortized inference: approximate local posteriors $\{p(z_d | x_d)\}_{d=1}^{D}$ globally by ϕ .
- Objective:

$$\mathbb{E}_{\hat{p}(x)}[\text{ELBO}(x)] \approx \frac{1}{D} \sum_{d=1}^{D} \mathbb{E}_{q_{\phi}(z_d | x_d)} \left[\log p_{\theta}(z_d) p_{\theta}(x_d | z_d) - \log q_{\phi}(z_d | x_d) \right].$$

Gradient estimation with the reparameterization trick:

$$z_d \sim q_{\phi}(z_d | x_d) \Leftrightarrow z_d = g_{\phi}(x_d, \epsilon) \coloneqq v_{\phi}(x_d) + \epsilon \sqrt{\Gamma_{\phi}(x_d)}, \epsilon \sim q(\epsilon) = \mathcal{N}(\epsilon | 0, I).$$

 $\nabla_{\phi,\theta} \mathbb{E}_{\hat{p}(x)}[\text{ELBO}(x)] \approx \frac{1}{D} \sum_{d=1}^{D} \mathbb{E}_{q(\epsilon)} \left[\nabla_{\phi,\theta} \left(\log p_{\theta}(z_d) p_{\theta}(x_d | z_d) - \log q_{\phi}(z_d | x_d) |_{z_d = g_{\phi}(x_d, \epsilon)} \right) \right].$ (Smaller variance than REINFORCE-like estimator [Wil92]: $\nabla_{\theta} \mathbb{E}_{q_{\theta}}[f] = \mathbb{E}_{q_{\theta}}[f \nabla_{\theta} \log q_{\theta}]$.)

• Generation results [KW14]

Θ Ð 3 2

• With spatial attention structure [GDG+15]

- Inference with importance-weighted ELBO [BGS15]
 - ELBO: $\mathcal{L}_{\theta}[q_{\phi}(z)] = \mathbb{E}_{q_{\phi}(z)}[\log p_{\theta}(z, x)] \mathbb{E}_{q_{\phi}(z)}[\log q_{\phi}(z)].$
 - A tighter lower bound:

$$\mathcal{L}_{\theta}^{(k)}[q_{\phi}] \coloneqq \mathbb{E}_{z^{(1)},\dots,z^{(k)} \sim \text{i.i.d.} q_{\phi}} \left[\log \frac{1}{k} \sum_{i=1}^{k} \frac{p_{\theta}(z^{(k)}, x)}{q_{\phi}(z^{(k)})} \right].$$

Ordering relation:

$$\mathcal{L}_{\theta}\left[q_{\phi}\right] = \mathcal{L}_{\theta}^{(1)}\left[q_{\phi}\right] \le \mathcal{L}_{\theta}^{(2)}\left[q_{\phi}\right] \le \dots \le \mathcal{L}_{\theta}^{(\infty)}\left[q_{\phi}\right] = \log p_{\theta}(x) \,.$$

If
$$\frac{p(z,x)}{q(Z|X)}$$
 is bounded.

- Parametric Variational Inference: towards more flexible approximations.
 - Explicit VI:

Normalizing flows [RM15, KSJ+16]. Using a tighter ELBO [BGS15].

• Implicit VI:

Adversarial Auto-Encoder [MSJ+15], Adversarial Variational Bayes [MNG17], Wasserstein Auto-Encoder [TBGS17], [SSZ18a], [LT18], [SSZ18b].

- MCMC [LTL17] and Particle-Based VI [FWL17, PGH+17]:
 - Train the encoder as a sample generator.
 - Amortize the update on samples to ϕ .

Outline

- Generative Models: Overview
- Plain Generative Models
 - Autoregressive Models
- Latent Variable Models
 - Deterministic Generative Models
 - Generative Adversarial Nets
 - Flow-Based Generative Models
 - Bayesian Generative Models
 - Bayesian Inference (variational inference, MCMC)
 - Bayesian Networks
 - Topic Models (LDA, LightLDA, sLDA)
 - Deep Bayesian Models (VAE)
 - Markov Random Fields (Boltzmann machines, deep energy-based models)

Specify $p_{\theta}(x, z)$ by an energy function $E_{\theta}(x, z)$: $p_{\theta}(x, z) | \propto \exp(-E_{\theta}(x, z))$ $p_{\theta}(x, z) = \frac{1}{Z_{\theta}} \exp(-E_{\theta}(x, z)), Z_{\theta} = \int \exp(-E_{\theta}(x', z')) dx' dz'.$

- Only correlation and no causality: p(x, z) is either p(z)p(x|z) or p(x)p(z|x).
- + Flexible and simple in modeling dependency.
- Harder to learn and generate than BayesNets.
 - Learning: even $p_{\theta}(x, z)$ is unavailable. $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)p_{\theta}(z|x)}[\nabla_{\theta} E_{\theta}(x, z)] + \mathbb{E}_{p_{\theta}(x, z)}[\nabla_{\theta} E_{\theta}(x, z)].$ (augmented) data distribution model distribution
 (Bayesian inference) (generation)
 - Bayesian inference: generally same as BayesNets.
 - Generation: rely on MCMC or train a generator.

=0 if $E = \log p$.

Z

• Learning: $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)p_{\theta}(z|x)}[\nabla_{\theta} E_{\theta}(x,z)] + \mathbb{E}_{p_{\theta}(x,z)}[\nabla_{\theta} E_{\theta}(x,z)].$

Bayesian Inference

• Boltzmann Machine: Gibbs sampling for both inference and generation [HS83].

$$E_{\theta}(x,z) = -x^{\mathsf{T}}Wz - \frac{1}{2}x^{\mathsf{T}}Lx - \frac{1}{2}z^{\mathsf{T}}Jz.$$

$$\Rightarrow$$

$$p_{\theta}(z_{j}|x,z_{-j}) = \operatorname{Bern}\left(\sigma\left(\sum_{i=1}^{D}W_{ij}x_{i} + \sum_{m\neq j}^{P}J_{jm}z_{j}\right)\right),$$

$$p_{\theta}(x_{i}|z,x_{-i}) = \operatorname{Bern}\left(\sigma\left(\sum_{j=1}^{P}W_{ij}z_{j} + \sum_{k\neq i}^{D}L_{ik}x_{k}\right)\right).$$

Generation

• Learning: $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)p_{\theta}(z|x)}[\nabla_{\theta} E_{\theta}(x,z)] + \mathbb{E}_{p_{\theta}(x,z)}[\nabla_{\theta} E_{\theta}(x,z)].$

Bayesian Inference

Generation

• Restricted Boltzmann Machine [Smo86]:

$$E_{\theta}(x,z) = -x^{\mathsf{T}}Wz + b^{(x)^{\mathsf{T}}}x + b^{(z)^{\mathsf{T}}}z.$$

• Bayesian Inference is exact:

$$p_{\theta}(z_k|x) = \operatorname{Bern}\left(\sigma\left(x^{\top}W_{k} + b_k^{(z)}\right)\right).$$

 Generation: Gibbs sampling. Iterate:

$$p_{\theta}(z_k|x) = \operatorname{Bern}\left(\sigma\left(x^{\top}W_{k}+b_k^{(z)}\right)\right),$$
$$p_{\theta}(x_k|z) = \operatorname{Bern}\left(\sigma\left(W_{k}z+b_k^{(x)}\right)\right).$$

Deep Energy-Based Models:

No latent variable; $E_{\theta}(x)$ is modeled by a neural network. $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)}[\nabla_{\theta} E_{\theta}(x)] + \mathbb{E}_{p_{\theta}(x')}[\nabla_{\theta} E_{\theta}(x')].$

• [KB16]: learn a generator

$$x \sim q_\phi(x) \Leftrightarrow z \sim q(z), x = g_\phi(z),$$

to mimic the generation from $p_{\theta}(x)$: $\arg\min_{\phi} \operatorname{KL}(q_{\phi}, p_{\theta}) = \arg\min_{\phi} \mathbb{E}_{q(z)} \left[E_{\theta} \left(g_{\phi}(z) \right) \right] -$

approx. by batch normalization Gaussian

清华大学-MSRA《高等机器学习》

Deep Energy-Based Models:

No latent variable; $E_{\theta}(x)$ is modeled by a neural network. $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)}[\nabla_{\theta} E_{\theta}(x)] + \mathbb{E}_{p_{\theta}(x')}[\nabla_{\theta} E_{\theta}(x')].$

• [DM19]: estimate $\mathbb{E}_{p_{\theta}(x')}[\cdot]$ by samples drawn by the Langevin Dynamics.

Deep Energy-Based Models:

No latent variable; $E_{\theta}(x)$ is modeled by a neural network. $\nabla_{\theta} \mathbb{E}_{\hat{p}(x)}[\log p_{\theta}(x)] = -\mathbb{E}_{\hat{p}(x)}[\nabla_{\theta} E_{\theta}(x)] + \mathbb{E}_{p_{\theta}(x')}[\nabla_{\theta} E_{\theta}(x')].$

- [DM19]: estimate $\mathbb{E}_{p_{\theta}(x')}[\cdot]$ by samples drawn by the Langevin Dynamics $x^{(k+1)} = x^{(k)} \varepsilon \nabla_x E_{\theta}(x^{(k)}) + \mathcal{N}(0, 2\varepsilon).$
 - Replay buffer for initializing the LD chain.
 - L₂-regularization on the energy function.

Deep Energy-Based Models:

• [DM19]

ImageNet32x32 Generation

Model	Inception	FID		
CIFAR-10 Unconditional				
PixelCNN (Van Oord et al., 2016)	4.60	65.93		
PixelIQN (Ostrovski et al., 2018)	5.29	49.46		
EBM (single)	6.02	40.58		
DCGAN (Radford et al., 2016)	6.40	37.11		
WGAN + GP (Gulrajani et al., 2017)	6.50	36.4		
EBM (10 historical ensemble)	6.78	38.2		
SNGAN (Miyato et al., 2018)	8.22	21.7		
CIFAR-10 Conditional				
Improved GAN	8.09	-		
EBM (single)	8.30	37.9		
Spectral Normalization GAN	8.59	25.5		
ImageNet 32x32 Conditional				
PixelCNN	8.33	33.27		
PixelIQN	10.18	22.99		
EBM (single)	18.22	14.31		
ImageNet 128x128 Conditional				
ACGAN (Odena et al., 2017)	28.5	-		
EBM* (single)	28.6	43.7		
SNGAN	36.8	27.62		

Generative Model: Summary

Latent Variable Models				
Deterministic Generative Models		Bayesian Generative Models		
GANs	Flow-Based	BayesNets	MRFs	
 + Abstract representation and manipulated generation - Harder learning 				
+ Flexible modeling+ Easy and good generation		 + Robust to small data and adversarial attack + Principled inference + Prior knowledge 		
Hard inferenceHard learning	+ Easy inference+ Stable learning- Hard model design	+ Causal information+ Easier learning+ Easy generation	+ Simple dependency modeling- Harder learning- Hard generation	
p(z)	p(z)	p(z) (z)		
$x = f_{\theta}(z)$ Neural Nets) $p_{\theta}(x) \qquad x$	$x = f_{\theta}(z)$ (invertible) $p_{\theta}(x)$ x	$x \sim p_{\theta}(x z)$ $p_{\theta}(x) x$	$p_{\theta}(x,z) \propto \exp(-E_{\theta}(x,z))$	
	Deterministic of GANs + Abstract represe - Harder learning + Flexible modelin + Easy and good go - Hard inference - Hard learning p(z) $zx = f_{\theta}(z)Veural Nets)p_{\theta}(x) x$	Late Deterministic Generative Models GANs Flow-Based + Abstract representation and manipulate - Harder learning + Flexible modeling + Easy and good generation - Hard inference - Hard learning + Easy inference + Stable learning p(z) (z) x = f_{\theta}(z) Veural Nets) p_{\theta}(x) (x) Flow-Based (invertible) p_{\theta}(x) (x) Flow-Based (invertible) p_{\theta}(x) (x) Flow-Based (invertible) p_{\theta}(x) (x) Flow-Based Flow-Based Flow-Based Flow-Based (invertible) P_{\theta}(x) (x) Flow-Based Flow-Based (invertible) P_{\theta}(x) (x) Flow-Based (invertible) P_{\theta}(x) (x) Flow-Based (invertible) P_{\theta}(x) (x) Flow-Based (invertible) (invertible) Flow-Based (invertible) (invertible) (invertible) (invertible) (invertible) (invertible) (invertible) (invertible) (invertible) (invertible) (invertible)	Latent Variable Models Deterministic Generative Models Bayesian GANs Flow-Based BayesNets + Abstract representation and manipulated generation - Harder learning + Flexible modeling + Flexible modeling + Easy and good generation - Hard inference - Hard inference - Hard learning p(z) (z) $x = f_{\theta}(z)$ Neural Nets) $p_{\theta}(x)$ (x) $p_{\theta}(x)$ (x) $p_{\theta}(x)$ (x) $afe \pm \xi^{2}$ -MSRA 《高等机器学习》	

Questions?

- Plain Generative Models
 - Autoregressive Models
 - [Fre98] Frey, Brendan J. (1998). *Graphical models for machine learning and digital communication*. MIT press.
 - [LM11] Larochelle, H. and Murray, I. The neural autoregressive distribution estimator. In *Proceedings of the International Conference on Artificial Intelligence and Statistics*, 2011.
 - [UML14] Uria, B., Murray, I., & Larochelle, H. (2014). A deep and tractable density estimator. In *International Conference on Machine Learning* (pp. 467-475).
 - [GGML15] Germain, M., Gregor, K., Murray, I., & Larochelle, H. (2015). MADE: Masked autoencoder for distribution estimation. In *International Conference on Machine Learning* (pp. 881-889).
 - [OKK16] Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. *arXiv preprint arXiv:1601.06759*.
 - [ODZ+16] Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. *arXiv preprint arXiv:1609.03499*.

- Deterministic Generative Models
 - Generative Adversarial Networks
 - [GPM+14] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In *Advances in neural information processing systems* (pp. 2672-2680).
 - [ACB17] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In *International Conference on Machine Learning* (pp. 214-223).
 - Flow-Based Generative Models
 - [DKB15] Dinh, L., Krueger, D., & Bengio, Y. (2015). NICE: Non-linear independent components estimation. *ICLR workshop*.
 - [DSB17] Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2017). Density estimation using real NVP. In *Proceedings of the International Conference on Learning Representations*.
 - [PPM17] Papamakarios, G., Pavlakou, T., & Murray, I. (2017). Masked autoregressive flow for density estimation. In *Advances in Neural Information Processing Systems* (pp. 2338-2347).
- [KD18] Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 2019/10/10 convolutions. In Advances in Neural Information Processing Systems (pp. 10215-10224).

- Bayesian Inference: Variational Inference
 - Explicit Parametric VI:
 - [SJJ96] Saul, L. K., Jaakkola, T., & Jordan, M. I. (1996). Mean field theory for sigmoid belief networks. *Journal of artificial intelligence research*, 4, 61-76.
 - [BNJ03] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. *Journal of Machine Learning Research*, 3(Jan), pp.993-1022.
 - [GHB12] Gershman, S., Hoffman, M., & Blei, D. (2012). Nonparametric variational inference. arXiv preprint arXiv:1206.4665.
 - [HBWP13] Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference. *The Journal of Machine Learning Research*, 14(1), 1303-1347.
 - [RGB14] Ranganath, R., Gerrish, S., & Blei, D. (2014). Black box variational inference. In *Artificial Intelligence and Statistics* (pp. 814-822).
 - [RM15] Rezende, D.J., & Mohamed, S. (2015). Variational inference with normalizing flows. In *Proceedings of the International Conference on Machine Learning* (pp. 1530-1538).
 - [KSJ+16] Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Improved variational inference with inverse autoregressive flow. In *Advances in neural information processing systems* (pp. 4743-4751).

- Bayesian Inference: Variational Inference
 - Implicit Parametric VI: density ratio estimation
 - [MSJ+15] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2016). Adversarial Autoencoders. In Proceedings of the International Conference on Learning Representations.
 - [MNG17] Mescheder, L., Nowozin, S., & Geiger, A. (2017). Adversarial variational Bayes: Unifying variational autoencoders and generative adversarial networks. In *Proceedings of the International Conference on Machine Learning* (pp. 2391-2400).
 - [Hus17] Huszár, F. (2017). Variational inference using implicit distributions. *arXiv preprint* arXiv:1702.08235.
 - [TRB17] Tran, D., Ranganath, R., & Blei, D. (2017). Hierarchical implicit models and likelihood-free variational inference. In Advances in Neural Information Processing Systems (pp. 5523-5533).
 - [SSZ18a] Shi, J., Sun, S., & Zhu, J. (2018). Kernel Implicit Variational Inference. In *Proceedings of the International Conference on Learning Representations*.
 - Implicit Parametric VI: gradient estimation
 - [VLBM08] Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. In *Proceedings of the 25th international conference on Machine learning* (pp. 1096-1103). ACM.
 - [LT18] Li, Y., & Turner, R. E. (2018). Gradient estimators for implicit models. In *Proceedings of the International Conference on Learning Representations*.
 - [SSZ18b] Shi, J., Sun, S., & Zhu, J. (2018). A spectral approach to gradient estimation for implicit distributions. In *Proceedings of the 35th International Conference on Machine Learning* (pp. 4651-4660).

- Bayesian Inference: Variational Inference
 - Particle-Based VI
 - [LW16] Liu, Q., & Wang, D. (2016). Stein variational gradient descent: A general purpose Bayesian inference algorithm. In *Advances In Neural Information Processing Systems* (pp. 2378-2386).
 - [Liu17] Liu, Q. (2017). Stein variational gradient descent as gradient flow. In Advances in neural information processing systems (pp. 3115-3123).
 - [CZ17] Chen, C., & Zhang, R. (2017). Particle optimization in stochastic gradient MCMC. *arXiv* preprint arXiv:1711.10927.
 - [FWL17] Feng, Y., Wang, D., & Liu, Q. (2017). Learning to Draw Samples with Amortized Stein Variational Gradient Descent. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence*.
 - [PGH+17] Pu, Y., Gan, Z., Henao, R., Li, C., Han, S., & Carin, L. (2017). VAE learning via Stein variational gradient descent. In *Advances in Neural Information Processing Systems* (pp. 4236-4245).
 - [LZ18] Liu, C., & Zhu, J. (2018). Riemannian Stein Variational Gradient Descent for Bayesian Inference. In *Proceedings of the 32nd AAAI Conference on Artificial Intelligence* (pp. 3627-3634).

- Bayesian Inference: Variational Inference
 - Particle-Based VI
 - [CMG+18] Chen, W. Y., Mackey, L., Gorham, J., Briol, F. X., & Oates, C. J. (2018). Stein points. *arXiv preprint arXiv:1803.10161*.
 - [FCSS18] Futami, F., Cui, Z., Sato, I., & Sugiyama, M. (2018). Frank-Wolfe Stein sampling. *arXiv* preprint arXiv:1805.07912.
 - [CZW+18] Chen, C., Zhang, R., Wang, W., Li, B., & Chen, L. (2018). A unified particleoptimization framework for scalable Bayesian sampling. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence*.
 - [ZZC18] Zhang, J., Zhang, R., & Chen, C. (2018). Stochastic particle-optimization sampling and the non-asymptotic convergence theory. *arXiv preprint arXiv:1809.01293*.
 - [LZC+19] Liu, C., Zhuo, J., Cheng, P., Zhang, R., Zhu, J., & Carin, L. (2019). Understanding and Accelerating Particle-Based Variational Inference. In *Proceedings of the 36th International Conference on Machine Learning* (pp. 4082-4092).

- Bayesian Inference: MCMC
 - Classical MCMC
 - [MRR+53] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953). Equation of state calculations by fast computing machines. *The Journal of Chemical Physics*, 21(6), pp.1087-1092.
 - [Has70] Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. *Biometrika*, 57(1), pp.97-109.
 - [GG87] Geman, S., & Geman, D. (1987). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. In *Readings in computer vision* (pp. 564-584).
 - [ADDJ03] Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for machine learning. *Machine learning*, *50*(1-2), 5-43.

- Bayesian Inference: MCMC
 - Dynamics-Based MCMC: full-batch
 - [Lan08] Langevin, P. (1908). Sur la théorie du mouvement Brownien. Compt. Rendus, 146, 530-533.
 - [DKPR87] Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D. (1987). Hybrid Monte Carlo. *Physics letters B*, 195(2), pp.216-222.
 - [RT96] Roberts, G. O., & Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. *Bernoulli*, 2(4), 341-363.
 - [RS02] Roberts, G.O., & Stramer, O. (2002). Langevin diffusions and Metropolis-Hastings algorithms. *Methodology and computing in applied probability*, 4(4), pp.337-357.
 - [Nea11] Neal, R.M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte Carlo, 2(11), p.2.
 - [ZWC+16] Zhang, Y., Wang, X., Chen, C., Henao, R., Fan, K., & Carin, L. (2016). Towards unifying Hamiltonian Monte Carlo and slice sampling. In *Advances in Neural Information Processing Systems* (pp. 1741-1749).
 - [TRGT17] Tripuraneni, N., Rowland, M., Ghahramani, Z., & Turner, R. (2017, August). Magnetic Hamiltonian Monte Carlo. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70* (pp. 3453-3461).
 - [Bet17] Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. *arXiv* preprint arXiv:1701.02434.

- Bayesian Inference: MCMC
 - Dynamics-Based MCMC: full-batch (manifold support)
 - [GC11] Girolami, M., & Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 73(2), 123-214.
 - [BSU12] Brubaker, M., Salzmann, M., & Urtasun, R. (2012, March). A family of MCMC methods on implicitly defined manifolds. In *Artificial intelligence and statistics* (pp. 161-172).
 - [BG13] Byrne, S., & Girolami, M. (2013). Geodesic Monte Carlo on embedded manifolds. *Scandinavian Journal of Statistics*, 40(4), 825-845.
 - [LSSG15] Lan, S., Stathopoulos, V., Shahbaba, B., & Girolami, M. (2015). Markov chain Monte Carlo from Lagrangian dynamics. *Journal of Computational and Graphical Statistics*, 24(2), 357-378.

- Bayesian Inference: MCMC
 - Dynamics-Based MCMC: stochastic gradient
 - [WT11] Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In *Proceedings of the International Conference on Machine Learning* (pp. 681-688).
 - [CFG14] Chen, T., Fox, E., & Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte Carlo. In *Proceedings of the International conference on machine learning* (pp. 1683-1691).
 - [DFB+14] Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., & Neven, H. (2014). Bayesian sampling using stochastic gradient thermostats. In *Advances in neural information processing systems* (pp. 3203-3211).
 - [Bet15] Betancourt, M. (2015). The fundamental incompatibility of scalable Hamiltonian Monte Carlo and naive data subsampling. In *International Conference on Machine Learning* (pp. 533-540).
 - [TTV16] Teh, Y. W., Thiery, A. H., & Vollmer, S. J. (2016). Consistency and fluctuations for stochastic gradient Langevin dynamics. *The Journal of Machine Learning Research*, *17*(1), 193-225.
 - [LPH+16] Lu, X., Perrone, V., Hasenclever, L., Teh, Y. W., & Vollmer, S. J. (2016). Relativistic Monte Carlo. *arXiv preprint arXiv:1609.04388*.
 - [ZCG+17] Zhang, Y., Chen, C., Gan, Z., Henao, R., & Carin, L. (2017, August). Stochastic gradient monomial Gamma sampler. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70* (pp. 3996-4005).
 - [LTL17] Li, Y., Turner, R.E., & Liu, Q. (2017). Approximate inference with amortised MCMC. *arXiv* preprint arXiv:1702.08343.

- Bayesian Inference: MCMC
 - Dynamics-Based MCMC: stochastic gradient (manifold support)
 - [PT13] Patterson, S., & Teh, Y.W. (2013). Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In *Advances in neural information processing systems* (pp. 3102-3110).
 - [MCF15] Ma, Y. A., Chen, T., & Fox, E. (2015). A complete recipe for stochastic gradient MCMC. In Advances in Neural Information Processing Systems (pp. 2917-2925).
 - [LZS16] Liu, C., Zhu, J., & Song, Y. (2016). Stochastic Gradient Geodesic MCMC Methods. In Advances in Neural Information Processing Systems (pp. 3009-3017).
 - Dynamics-Based MCMC: general theory
 - [JKO98] Jordan, R., Kinderlehrer, D., & Otto, F. (1998). The variational formulation of the Fokker-Planck equation. *SIAM journal on mathematical analysis*, *29*(1), 1-17.
 - [MCF15] Ma, Y. A., Chen, T., & Fox, E. (2015). A complete recipe for stochastic gradient MCMC. In Advances in Neural Information Processing Systems (pp. 2917-2925).
 - [CDC15] Chen, C., Ding, N., & Carin, L. (2015). On the convergence of stochastic gradient MCMC algorithms with high-order integrators. In *Advances in Neural Information Processing Systems* (pp. 2278-2286).
- [LZZ19] Liu, C., Zhuo, J., & Zhu, J. (2019). Understanding MCMC Dynamics as Flows on the Wasserstein Space. In *Proceedings of the 36th International Conference on Machine Learning* 2019/10/10 (pp. 4093-4103). 清华大学-MSRA《高等机器学习》 138

- Bayesian Models
 - Bayesian Networks: Topic Models
 - [BNJ03] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. *Journal of Machine Learning Research*, 3(Jan), pp.993-1022.
 - [GS04] Griffiths, T.L., & Steyvers, M. (2004). Finding scientific topics. *Proceedings of the National academy of Sciences*, 101 (suppl 1), pp.5228-5235.
 - [SG07] Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. *Handbook of latent semantic analysis*, 427(7), 424-440.
 - [MB08] Mcauliffe, J.D., & Blei, D.M. (2008). Supervised topic models. In Advances in neural information processing systems (pp. 121-128).
 - [ZAX12] Zhu, J., Ahmed, A., & Xing, E. P. (2012). MedLDA: maximum margin supervised topic models. *Journal of Machine Learning Research*, 13(Aug), 2237-2278.
 - [PT13] Patterson, S., & Teh, Y.W. (2013). Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In *Advances in neural information processing systems* (pp. 3102-3110).
 - [ZCX14] Zhu, J., Chen, N., & Xing, E. P. (2014). Bayesian inference with posterior regularization and applications to infinite latent SVMs. *The Journal of Machine Learning Research*, *15*(1), 1799-1847.

- Bayesian Models
 - Bayesian Networks: Topic Models
 - [LARS14] Li, A.Q., Ahmed, A., Ravi, S., & Smola, A.J. (2014). Reducing the sampling complexity of topic models. In *Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 891-900).
 - [YGH+15] Yuan, J., Gao, F., Ho, Q., Dai, W., Wei, J., Zheng, X., Xing, E.P., Liu, T.Y., & Ma, W.Y. (2015). LightLDA: Big topic models on modest computer clusters. In *Proceedings of the 24th International Conference on World Wide Web* (pp. 1351-1361).
 - [CLZC16] Chen, J., Li, K., Zhu, J., & Chen, W. (2016). WarpLDA: a cache efficient o(1) algorithm for latent Dirichlet allocation. *Proceedings of the VLDB Endowment*, 9(10), pp.744-755.

- Bayesian Models
 - Bayesian Networks: Variational Auto-Encoders
 - [KW14] Kingma, D.P., & Welling, M. (2014). Auto-encoding variational Bayes. In *Proceedings of the* International Conference on Learning Representations.
 - [GDG+15] Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., & Wierstra, D. (2015). DRAW: A recurrent neural network for image generation. In *Proceedings of the 32nd International* Conference on Machine Learning.
 - [BGS15] Burda, Y., Grosse, R., & Salakhutdinov, R. (2015). Importance weighted autoencoders. arXiv preprint arXiv:1509.00519.
 - [DFD+18] Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J.M. (2018). Hyperspherical variational auto-encoders. In Proceedings of the Conference on Uncertainty in Artificial Intelligence.
 - [MSJ+15] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2016). Adversarial Autoencoders. In *Proceedings of the International Conference on Learning Representations*.
 - [CDH+16] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in neural information processing systems (pp. 2172-2180).
- [MNG17] Mescheder, L., Nowozin, S., & Geiger, A. (2017). Adversarial variational Bayes: Unifying • variational autoencoders and generative adversarial networks. In Proceedings of the International Conference on Machine Learning (pp 2391-2400) 2019/10/10 141

- Bayesian Models
 - Bayesian Networks: Variational Auto-Encoders
 - [TBGS17] Tolstikhin, I., Bousquet, O., Gelly, S., & Schoelkopf, B. (2017). Wasserstein Auto-Encoders. *arXiv preprint arXiv:1711.01558*.
 - [FWL17] Feng, Y., Wang, D., & Liu, Q. (2017). Learning to Draw Samples with Amortized Stein Variational Gradient Descent. In *Proceedings of the Conference on Uncertainty in Artificial Intelligence*.
 - [PGH+17] Pu, Y., Gan, Z., Henao, R., Li, C., Han, S., & Carin, L. (2017). VAE learning via Stein variational gradient descent. In *Advances in Neural Information Processing Systems* (pp. 4236-4245).
 - [KSDV18] Kocaoglu, M., Snyder, C., Dimakis, A. G., & Vishwanath, S. (2018). CausalGAN: Learning causal implicit generative models with adversarial training. In *Proceedings of the International Conference on Learning Representations*.
 - [LWZZ18] Li, C., Welling, M., Zhu, J., & Zhang, B. (2018). Graphical generative adversarial networks. In *Advances in Neural Information Processing Systems* (pp. 6069-6080).

- Bayesian Models
 - Markov Random Fields
 - [HS83] Hinton, G., & Sejnowski, T. (1983). Optimal perceptual inference. In *IEEE Conference on Computer Vision and Pattern Recognition*.
 - [Smo86] Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In *Parallel Distributed Processing*, volume 1, chapter 6, pages 194-281. MIT Press.
 - [Hin02] Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. *Neural computation*, 14(8), 1771-1800.
 - [LCH+06] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). A tutorial on energybased learning. *Predicting structured data*, 1(0).
 - [HOT06] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. *Neural computation*, 18(7), 1527-1554.
 - [SH09] Salakhutdinov, R., & Hinton, G. (2009, April). Deep Boltzmann machines. *In AISTATS* (pp. 448-455).
 - [Sal15] Salakhutdinov, R. (2015). Learning deep generative models. *Annual Review of Statistics and Its Application*, 2, 361-385.
 - [KB16] Kim, T., & Bengio, Y. (2016). Deep directed generative models with energy-based probability estimation. *arXiv preprint arXiv:1606.03439*.
 - [DM19] Du, Y., & Mordatch, I. (2019). Implicit generation and generalization in energy-based models. *arXiv preprint arXiv:1903.08689*.

- Others
 - Bayesian Models
 - [KYD+18] Kim, T., Yoon, J., Dia, O., Kim, S., Bengio, Y., & Ahn, S. (2018). Bayesian model-agnostic meta-learning. In *Advances in Neural Information Processing Systems* (pp. 7332-7342).
 - [LST15] Lake, B.M., Salakhutdinov, R., & Tenenbaum, J.B. (2015). Human-level concept learning through probabilistic program induction. *Science*, 350(6266), pp. 1332-1338.
 - Bayesian Neural Network
 - [LG17] Li, Y., & Gal, Y. (2017). Dropout inference in Bayesian neural networks with alphadivergences. In *Proceedings of the International Conference on Machine Learning* (pp. 2052-2061).
 - Related References
 - [Wil92] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8(3-4), 229-256.
 - [HV93] Hinton, G., & Van Camp, D. (1993). Keeping neural networks simple by minimizing the description length of the weights. In *in Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory*.
 - [NJ01] Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In *Advances in neural information processing systems* (pp. 841-848).
The End