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Introduction

Introduction

What is dynamics-based MCMC methods (D-MCMCs)?
A kind of MCMC methods that generate samples by simulating a
dynamics.

What is a dynamics?
A rule for a state to evolve over time. We only consider dynamics
under which a state evolves is continuous with respect to time.

deterministic: can be described by differential equations. E.g.
Hamilton dynamics.
stochastic: can be described by stochastic differential equations. E.g.
Brownian motion, Langevin dynamics.

Why use dynamics?

Arbitrarily sophisticated differentiable target distributions.
Samples with high mixing rate (low correlation).



Introduction

Why dynamics can generate desired samples?

Only samples from the stationary distribution (may not be unique) of
the dynamics can be drawn.
Stationary: suppose at some time there are a lot of states satisfying a
certain distribution. Each of the states evolves under the dynamics for
a same time interval and after that all the states behaves another
distribution. If the latter distribution is identical to the initial one for
any time interval, then the initial distribution is stationary.
If the current sample is from the stationary distribution, then its
evolved state is also from the stationary distribution. So it can be the
next sample.



D-MCMCs with Deterministic Dynamics

D-MCMCs with Deterministic Dynamics

Based on (Neal, 2011)
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Deterministic dynamics

A deterministic dynamics described by a differential equation:
ż = f(z). z = z(t): “the position of a particle”, a function of t.
E.g. Hamilton dynamics: z = (q, p) ∈ R2n, for a Hamiltonian
H(z) ∈ R, (q̇, ṗ) = (∇pH(z),−∇qH(z)).

A distribution on states: π(z, t). z: “a position in space”,
independent on t.
A distribution is stationary under the dynamics: ∂

∂tπ(z, t) = 0. Thus
it can be denoted as πs(z).
Interpretation: for a large number of independent particles {1, . . . , N}
with their position evolution {zi(t)}Ni=1, at some time point t1, their
positions {zi(t1)}Ni=1 obeys the distribution π(z, t1). At another time
point t2, their positions {zi(t2)}Ni=1 obeys the distribution π(z, t2).

How it evolves over time when each zi(t) evolves under a
deterministic dynamics?
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Evolution of π(z, t)

We choose some bounded region in the state space and bind the region
with the particles it contains and let the region evolve as all the contained
particles evolve. Denote the evolving region as Ω(t). Then

0
particle number

=============
conservation

d

dt

ˆ
Ω(t)

π(z, t)dz

Reynolds transport theorem & Gauss theorem
====================================

ż=ż(z,t): a vector field; π(z,t): a scalar field

ˆ
Ω(t)

(
∂π

∂t
+∇ · (πż)

)
dz

holds for any Ω(t), so

∂π

∂t
= −∇ · (πż) calculus

======= −∇π · ż − π∇ · ż.

Refer to the dynamics description ż = f(z),

∂

∂t
π(z, t) = −∇ ·

(
π(z, t)f(z)

)
,

which is the Fokker-Planck equation (FPE) with no diffusion.
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Condition for a stationary distribution

∂π

∂t
= −∇π · ż − π∇ · ż.

∇ · ż = 0⇔
Liouville’s theorem holds⇔ “Volume preservation” in (Neal, 2011)⇔
The Jacobian determinant of infinitesimal time evolution is 1.

Liouville’s theorem: dπ(z(t),t)
dt

calculus
======= ∂π

∂t + ż · ∇π iff ∇·ż=0
======== 0.

Volume preservation: dV
dt , d

dt

´
Ω(t)

dz
Reynolds transport theorem

======================
Gauss theorem´

Ω(t)
∇ · żdz iff ∇·ż=0

======== 0.

Hamilton dynamics satisfies Liouville’s theorem (thus ∇ · ż = 0, or volume
preservation):

∇ · ż = ∇q · q̇ +∇p · ṗ = ∇q · ∇pH −∇p · ∇qH = 0

More generally, a symplectic dynamics preserves volume. Hamilton dynamics
is symplectic.
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Condition for a stationary distribution

∂π

∂t
= −∇π · ż − π∇ · ż.

If the dynamics conserves some scalar H(z) (not explicitly involving t, thus
∂H/∂t = 0), i.e. dH/dt = 0, and if at some instant t = t0, π(z, t0) takes
the form g

(
H(z)

)
for some differentiable g : R→ R, then π(z, t) satisfies

∇π · ż = 0 at the instant:

∇π · ż = g′(H(z))∇H · ż calculus
======= g′(H(z))

(
dH

dt
− ∂H

∂t

)
= 0.

Hamilton dynamics conserves Hamiltonian H(z):

dH

dt
= ż · ∇H = q̇ · ∇qH + ṗ · ∇pH = ∇pH · ∇qH −∇qH · ∇pH = 0.
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Condition for a stationary distribution

In all,

For a deterministic dynamics ż = f(z) with ∇ · f(z) = 0 and some
scalar H(z) conserved, distributions in the form π(z, t) = g

(
H(z(t))

)
with g differentiable are its stationary distributions, thus can be
denoted as πs(z).

Hamilton dynamics has stationary distributions in the form
πs(z) = g

(
H(z)

)
.
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Discussions on the stationary distribution

Some issues on “Hamilton dynamics has stationary distributions in the form
πs(z) = g

(
H(z)

)
”.

From the form π = g
(
H(z)

)
, we already have ∂π/∂t = 0 i.e. stationary, so

why bother?
∂π/∂t = 0 iff stationary, but the form g

(
H(z)

)
should be interpreted as an

initial distribution π(z, 0). Before we conclude that beginning with this
distribution, the distribution afterwards remains the same (i.e. the
distribution is stationary), we cannot say that π(z, t) = g

(
H(z)

)
holds for

all t > 0.

Now that the stationary distribution is not unique for Hamilton dynamics,
which stationary distribution are we sampling from when using HMC?
It depends on the initial state, which determines the proportions over
different energies. (States with the same energy are uniformly preferred.) In
HMC, switching between different energies according to our desired
proportion is done by resampling the momentum p from N (0,M). This
determines the stationary distribution of HMC operations is exp{−H(z)},
as desired.
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Discussions on the stationary distribution

Some issues on “Hamilton dynamics has stationary distributions in the form
πs(z) = g

(
H(z)

)
”.

Intuition: we begin with g
(
H(z)

)
, or many sets of particles that particles in

the same set have the same Hamiltonian (energy) and uniformly distributed
on states with the Hamiltonian. The proportion of particles in the set with
Hamiltonian E is g(E). The particles evolve under Hamilton dynamics.
Since the dynamics conserves Hamiltonian, particles in different sets do not
mix while evolving, so the set with Hamiltonian E shares weight g(E)
constantly. Since Liouville’s theorem dπ/dt = 0 holds for Hamilton
dynamics, i.e. for each particle at any time the density around its evolved
state is the same as the density around its initial state, so at any time every
state of the same Hamiltonian is occupied by some particle (otherwise the
particle number is changed) thus at any time the density over states of the
same Hamiltonian keeps uniform. So the distribution is stationary.
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Some Ideas

Other forms of the Hamiltonian? Especially other forms of the kinetic
energy?

Other forms of g(H) apart from g(H) = exp{−H}?
Switch different energies directly by resampling energy from its proper
distribution g(E)Ω(E) (Ω(E) = d

dE

´
H(z)≤E π(z)dz) instead of

resampling the momentum, or other more efficient ways to randomly
switch energy?
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Simulation

From the conclusions before, the key properties for a numerical
integrator to simulate the dynamics are volume preservation and
conservation of Hamiltonian.

The change in Hamiltonian can be corrected by an
Metropolis-Hastings test.

The Euler integrator is not volume-preserving, so is not a proper one.
The leap-frog integrator is volume-preserving.
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SG-MCMCs with Stochastic Dynamics

Following (Ma et al., 2015)
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Stochastic dynamics and its density evolution

Stochastic gradient MCMC methods (SG-MCMCs)
Commonly, a stochastic dynamics is a continuous Markov process, which
can generally be described by the stochastic differential equation:

dz = f(z)dt+
√

2D(z)dW (t), (1)

where f(z) denotes the deterministic drift, W (t) is the Wiener process, and
D(z) is a positive semidefinite diffusion matrix. The wiener process W (t) is
the standard Brownian motion: a stochastic process satisfying 1) W (0) = 0
with probability 1; 2) W (t+ h)−W (t) ∼ N (0, h) and is independent of
W (τ) for τ ≤ t. Thus dW (t) is usually written as N (0,dt) informally and√

2D(z)dW (t) as N (0, 2D(z)dt).
The evolution of π(z, t) under the dynamics is given by the Fokker-Planck
Equation (FPE)

∂

∂t
π(z, t) = −∇ ·

(
π(z, t)f(z)

)
+∇∇ :

(
π(z, t)D(z)

)
,

where ∇∇ :
(
π(z, t)D(z)

)
=
∑
i,j

∂2

∂zi∂zj

(
π(z, t)Dij(z)

)
. For intuitive

derivations, see e.g. http://aforrester.bol.ucla.edu/educate/Research/Derive_FokkerPlanck.pdf or

https://me.ucsb.edu/~moehlis/moehlis_papers/appendix.pdf.

http://aforrester.bol.ucla.edu/educate/Research/Derive_FokkerPlanck.pdf
https://me.ucsb.edu/~moehlis/moehlis_papers/appendix.pdf
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Framework for the dynamics with desired stationary
distribution

If our target distribution is in the form π(z) ∝
(
−H(z)

)
, which should be

the stationary distribution of the dynamics, then what the dynamics looks
like?
The answer is, for the stochastic dynamics of Eqn. (1),
π(z) ∝ exp

(
−H(z)

)
is its stationary distribution if it satisfies

f(z) = −
(
D(z) +Q(z)

)
∇H(z) + Γ(z),Γi(z) =

∑
j

∂

∂zj

(
Dij(z) +Qij(z)

)
,

(2)

where Q is some skew-symmetric curl matrix. Additionally, if D(z) is
positive definite, or if ergodicity can be shown, then this stationary
distribution is unique.
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Proof: We only need to show that for π(z, t = 0) ∝ exp
(
−H(z)

)
, ∂
∂t
π(z, t) = 0 for

t > 0. This can be done by FPE. Denote for simplicity ∂
∂zi

as ∂i, then at t = 0,

∂π

∂t

FPE
===== −

∑
i

∂i
(
π(z, 0)fi(z)

)
+
∑
i,j

∂i∂j
(
π(z, 0)Dij(z)

)
Eqn. (2)
========

∑
i

∂i
[
π
∑
j

(D +Q)ij∂jH
]
−
∑
i

∂i
[
π
∑
j

∂j(D +Q)ij
]
+
∑
i,j

∂i∂j(πDij)

∂iπ=−π∂iH========== −
∑
i,j

∂i
[
(D +Q)ij∂jπ

]
−
∑
i,j

∂i
[
π∂j(D +Q)ij

]
+
∑
i,j

∂i∂j(πDij)

calculus
======= −

∑
i,j

∂i∂j
[
π(D +Q)ij

]
+
∑
i,j

∂i∂j(πDij)

Q>=−Q
======= −

∑
i,j

∂i∂j(πDij) +
∑
i,j

∂i∂j(πDij)

= 0.
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Framework for the dynamics with desired stationary
distribution

Completeness of the framework: For the SDE of Eqn. (1), suppose its
stationary distribution π(z) uniquely exists, and that[
π(z)fi(z)−

∑
j ∂j (π(z)Dij(z))

]
is integrable with respect to the

Lebesgue measure, then there exists a skew-symmetric Q(z) such
that Eqn. (2) holds.

Any continuous Markov process with stationary distribution π(z) can
be written as in Eqn. (1), which gives us D(z). If the continuous
Markov process further meets the conditions above, then the curl
matrix Q(z) can be constructed.
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How to use stochastic gradient to simulate?

A Bayesian model with random variable q: prior π(q), likelihood π(xd|q),

i.i.d. data D = {xd}Dd=1. Posterior π(q|D) ∝ π(q)
∏D
d=1 π(xd|q). For

SG-MCMCs, z = (q, r) with some augmenting variable r and the
Hamiltonian is usually in the form H(z) = T (z) + U(q). To make the
marginalized stationary distribution

´
exp{−H(z)}dr as our target π(q|D),

define U(q) , − log π(q|D) = − log π(q)−
∑D
d=1 log π(xd|q) and require´

exp{−T (z)}dr = const. Samples from exp{−H(z)} can be drawn by
simulating the dynamics.

Simulate the dynamics by dz = f(z)dt+N (0, 2D(z)dt): f(z) uses exact
gradient.

Simulate the dynamics by dz = f̃(z)dt+N (0, 2D(z)dt−B(z)dt2): f̃(z)
uses stochastic gradient: with a randomly selected subset S, ∇qŨ(q) =

∇q log π(q)− D
|S|
∑
x∈S ∇q log π(x|q) CLT

===== ∇qŨ(q) +N (0, V (q)), and

f̃(z) = f(z) +N (0, B(z)). (3)
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D-MCMCs viewed in the framework

HMC : z = (q, p), H(z) = 1
2p
>M−1p+ U(q), D(z) = 0,

Q(z) =

(
0 −I
I 0

)
. Dynamics:

{
dq = M−1pdt
dp = −∇U(q)dt

SGHMC : z = (q, p), H(z) = 1
2p
>M−1p+ U(q), D(z) =

(
0 0
0 C

)
,

Q(z) =

(
0 −I
I 0

)
. Dynamics:{

dq = M−1pdt

dp = −∇Ũ(q)dt− CM−1pdt+N (0, 2Cdt−Bdt2)

SGLD : z = q, H(z) = U(q), D(z) = D, Q(z) = 0. Dynamics:
dq = −D∇Ũ(q)dt+N (0, 2Ddt−Bdt2).

SGRLD : z = q, H(z) = U(q), D(z) = G(q)−1, Q(z) = 0. Dynamics:
dq = −G(q)−1∇Ũ(q)dt− Γ(q)dt+N (0, 2G(q)−1dt−Bdt2),
where Γi(q) =

∑
j ∂jDij(q).
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D-MCMCs viewed in the framework

SGNHT : z = (q, p, ξ), H(z) = 1
2p
>p+ U(q) + 1

2d (ξ −A)2,

D(z) =

 0 0 0
0 AI 0
0 0 0

, Q(z) =

 0 −I 0
I 0 p/d
0 −p>/d 0

, where

q, p ∈ Rd, ξ, A ∈ R. Dynamics:
dq = pdt

dp = −∇Ũ(q)dt− ξpdt+N (0, 2Adt−Bdt2)
dξ =

(
p>p/d− 1

)
dt

SGRHMC : z = (q, p), H(z) = 1
2p
>p+ U(q), D(z) =

(
0 0
0 G(q)−1

)
,

Q(z) =

(
0 −G(q)−1/2

G(q)−1/2 0

)
. Dynamics:

dq =G(q)−1/2pdt

dp =−G(q)−1/2∇Ũ(q)dt− Γ(q)dt

+G(q)−1pdt+N (0, 2G(q)−1 −Bdt2)

,

where Γi(q) =
∑
j

∂
∂qj

(G(q)−1/2)ij .
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Convergence Properties
for Integrators of SG-MCMCs

Following (Chen et al., 2015)
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Numerical integrators (simulation methods) for a
stochastic dynamics

Closed form solution π
(
z(t)

)
, z(t) ∈ Rn for a stochastic dynamics of

Eqn. (1) dz = f(z)dt+
√

2D(z)dW (t) is almost always intractable.
To simulate, a numerical integrator has to be designed.

Two approximations that a numerical integrator has to make for
tractability and scalability where simulation error may come from:
(Appr1) local generator approximation, and (Appr2) stochastic
gradient approximation.
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Setup for describing an integrator

Idea of weak convergence analysis: focusing on the effect of the sample
path, instead of on the sample path itself.

An (infinitesimal) generator L is used for analysis. It is defined for any
compactly supported twice differentiable function φ : Rn → R as

Lφ(z(t)) , lim
h→0+

E[φ(z(t+ h))]− φ(z(t))

h

Eqn. (1)
========

(
f(z(t)) · ∇+ 2D(z) : ∇∇

)
φ(z(t)), (4)

or in matrix representation, f>∇φ+ tr
(
D(z)(∇∇>φ)

)
. One key property

is, for an exact sample ze(T ) at a fixed time T ,

E[φ(ze(T ))] = eTLφ(z(0)).

(Informal intuition: Lφ(z) = dE[φ(z)]/dt,Ldt = dE[φ(z)]/φ(z),
Ldt = d logE[φ(z)].) The Kolmogorov operator etL is an exact operator for
the evolution of E[φ(z(t))] for all t (global).
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Setup for describing an integrator

To practically simulate the dynamics: the analytical form of etL is almost always
unknown, so we need Appr1; for scalability, we need Appr2. So

E[φ(ze(T ))] = eTLφ(z(0)) = ehL ◦ · · · ◦ ehLφ(z(0))

Appr2
≈ ehL̃L ◦ · · · ◦ ehL̃1φ(z(0))

Appr1
≈ P̃Lh ◦ · · · ◦ P̃ 1

hφ(z(0)) = E[φ(z̃n(T ))],

where time interval T is split into L pieces with each of size h, and:

a set of local generators {L̃l}Ll=1 are introduced that each uses the stochastic

gradient based on the minibatch selected for step l; Denote L̃l = L+ ∆Vl,
where ∆Vl is their difference and is (∇qŨl −∇qU) · ∇p for SGHMC.

a set of tractable approximate local operators {P̃ lh}Ll=1 are introduced that

each uses stochastic gradient and P̃ lh ≈ ehL̃l ; P̃ lh corresponds to a

Kth-order local integrator of L̃l if P̃ lhφ(z) = ehL̃lφ(z) +O(hK+1).

a numerical sample path {z̃n(lh)}Ll=1 can be drawn by successively applying

{P̃ lh}Ll=1 on current state: E[φ(z̃n(lh))] = P̃ lhφ(z̃n((l − 1)h)).
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Convergence Analysis

Finite-time error analysis

Stationary invariant measures (asymptotic sample distribution)

Convergence analysis with decreasing step sizes

The gradient noise (embodied as the matrix B(z) in Eqn. (3)) is ignored
(set B(z) = 0) in the simulating dynamics, since in practice B(z) is almost
always unknown and the noise is embodied in ∆Vl in our analysis here.
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Finite-time error analysis

Finite-time error analysis
In practice we are only interested in the effect of samples: how the sample
average φ̂ , 1

L

∑L
l=1 φ(z̃n(lh)) is close to the true expectation

φ̄ ,
´
φ(z)π(z)dz. For this, we have the following theorems:

Theorem (Bias bound)

Under Assumption 1 in (Chen et al., 2015), the bias of an SG-MCMC with a
Kth-order integrator at time T = hL can be bounded as:∣∣∣Eφ̂− φ̄∣∣∣ = O

(
1

Lh
+

∑
l ‖E∆Vl‖
L

+ hK
)
.

Theorem (MSE bound)

Under Assumption 1 in (Chen et al., 2015) and the requirement of smoothness of
φ, the MSE of an SG-MCMC with a Kth-order integrator at time T = hL is
bounded, for some C > 0 independent of (L, h), as

E
(
φ̂− φ̄

)2

≤ C
( 1
L

∑
l E‖∆Vl‖2

L
+

1

Lh
+ h2K

)
.
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Finite-time error analysis

Finite-time error analysis
From the theorems, we have:

|Eφ̂− φ̄| might diverge when
∑
l ‖E∆Vl‖ grows faster than O(L). But

for most SG-MCMCs
∑
l ‖E∆Vl‖ is assumed to vanish since the

stochastic gradient is regarded as unbiased.
In case where

∑
l ‖E∆Vl‖ vanishes, an optimal bound for the bias

O(L−K/(K+1)) is achieved when h ∝ L−1/(K+1), and for the MSE
O(L−2K/(2K+1)) when h ∝ L−1/(2K+1). So a higher order integrater
basically performs better.
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Stationary invariant measures

Asymptotic properties: for the two bounding theorems above, fix h and let
L→∞:
Empirical expectation: Eφ̂ = φ̄+O(hK), empirical variance:

E(φ̂− Eφ̂)2 = O(h2K)

How the stationary distribution of the numeric simulation dynamics is close
to the stationary distribution of the exact dynamics? Define the distance
between two measures π1 and π2 as

d(π1, π2) , supφ

∣∣∣Eπ1 [φ(z)]− Eπ2 [φ(z)]
∣∣∣.

Theorem (Error of asymptotic sample distribution)

Assume that a Kth-order integrator is geometric ergodic and its invariant
measures exist, then any invariant measure π̃h is close to the invariant measure π
of the exact dynamics with an error up to O(hK), i.e. d(π̃, π) ≤ ChK for some
C ≥ 0.

Only orders of numerical approximations (Appr1) but not the stochastic
gradient approximation (Appr2) affect the asymptotic invariant measure of
an SG-MCMC algorithm.
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Convergence analysis with decreasing step sizes

Assumption 2

The step sizes {hl} are decreasing, and 1)
∑∞

l=1 hl =∞; and 2)

limL→∞

∑L
l=1 h

K+1
l∑L

l=1 hl
= 0.

Denote the finite sum of step sizes as SL ,
∑L

l=1 hl and modify the

sample average as φ̃ , 1
SL

∑L
l=1 hlφ

(
z̃n(Sl)

)
. Assume E∆Vl = 0. Then

we have the following theorem:
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Convergence analysis with decreasing step sizes

Theorem (Bias bound and MSE bound for decreasing step sizes)

Under Assumption 1 in (Chen et al., 2015) and Assumption 2, for a smooth test
function φ, the bias and MSE of a decreasing-step-size SG-MCMC with a
Kth-order integrator at time SL are bounded as:

BIAS:
∣∣∣Eφ̃− φ̄∣∣∣ = O

(
1

SL
+

∑L
l=1 h

K+1
l

SL

)
MSE: E

(
φ̃− φ̄

)2

≤ C
(

1

S2
L

L∑
l=1

h2
lE
[
‖∆Vl‖2

]
+

1

SL
+

(
∑L
l=1 h

K+1
l )2

S2
L

)

Thus limL→∞
∣∣Eφ̃− φ̄∣∣ = 0, and if limL→∞

1
S2
L

∑L
l=1 h

2
l = 0 (which the

assumption
∑∞
l=1 h

2
l <∞ satisfies), limL→∞ E

(
φ̃− φ̄

)2
= 0.
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Convergence analysis with decreasing step sizes

Corollary

Using the step size sequences hl ∝ l−α for 0 < α < 1, all the assumptions in the
above theorem are satisfied thus φ̃ is asymptotically consistent with φ̄.

Remark

For the step size scheme hl ∝ l−α, an optimal bound for the bias is achieved
when α = 1/(K + 1) and for MSE when α = 1/(2K + 1), both agree with the
optimal step size scheme for fixed-step-size case.

The decreasing step size scheme enjoys the theoretical advantage that the

empirical estimation is asymptotically unbiased, but in practice this benefit might

not be significant since the exploration over the whole sample space may be

inefficient. (Thus SGHMC proposes fixed step size.)
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Practical Numerical Integrators

Euler integrator: z̃n(Sl) = f
(
z̃n(Sl−1)

)
hl +N

(
0, 2D

(
z̃n(Sl−1)

)
hl

)
.

It is a first-order integrator.

Symmetric Splitting Integrator (SSI): split the local generator L̃l into several
sub-generators that can be solved analytically.
Example of SSI for SGHMC:(

dq

dp

)
=

(
M−1p

−∇qŨl(q)− CM−1p

)
dt+N

(
0,

(
0 0
0 2Cdt

))
,

So according to Eqn. (4),

L̃l =

(
(M−1p) · ∇q

−
(
∇qŨl(q)

)
· ∇p −

(
CM−1p

)
· ∇p + 2C : ∇p∇p

)
.

Split L̃l into: L̃l = LA + LB + LOl
, where



Convergence Properties for Integrators of SG-MCMCs Practical Numerical Integrators

LA =

(
(M−1p) · ∇q

0

)
, LB =

(
0

−
(
CM−1p

)
· ∇p

)
,

LOl
=

(
0

−
(
∇qŨl(q)

)
· ∇p + 2C : ∇p∇p

)
.

According to Eqn. (4), the corresponding sub-SDEs are

A :

{
dq = M−1pdt
dp = 0

, B :

{
dq = 0
dp = −CM−1pdt

,

Ol :

{
dq = 0

dp = −∇qŨl(q)dt+N (0, 2Cdt)
.

which can be easily solved in closed form, yielding etLA , etLB and etLOl . Then
construct the approximate local operator as
P̃ lh , e

h
2LA ◦ eh

2LB ◦ ehLOl ◦ eh
2LB ◦ eh

2LA .

The SSI scheme is a second-order local integrator, i.e. P̃ lh = ehL̃l +O(h3).
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