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Causality
• Formal definition of causality:

“two variables have a causal relation, if intervening the cause may change the effect, but not 
vice versa” [Pearl, 2009; Peters et al., 2017].

• Intervention: change the value of a variable by leveraging mechanisms and changing variables 
out of the considered system.

• Example: for the 𝐴ltitude and average 𝑇emperature of a city, 𝐴 → 𝑇.
• Running a huge heater (intv. 𝑇) does not lower 𝐴.

• Raising the city by a huge elevator (intv. 𝐴) lowers 𝑇.

• Causality contains more information than observation (static data).
• E.g., both 𝑝 𝐴 𝑝 𝑇 𝐴 (𝐴 → 𝑇) and 𝑝 𝑇 𝑝 𝐴 𝑇 (𝑇 → 𝐴) can describe the observed relation 
𝑝 𝐴, 𝑇 .



Causality
The Independent Mechanism Principle.
• Principle 2.1 (Independent mechanisms)

The causal generative process of a system’s variables is composed of autonomous modules 
that do not inform or influence each other.
In the probabilistic case, this means that the conditional distribution of each variable given 
its causes (i.e., its mechanism) does not inform or influence the other conditional 
distributions.

• It is possible to conduct 
a localized intervention.

• We can change one 
mechanism without 
affecting the others.



Structural Causal Models
For describing causal relations.
• Definition 6.2 (Structural causal models) An SCM ℭ ≔ 𝐒, 𝑃𝐍 consists of a collection 𝐒 of 𝑑

(structural) assignments, 𝑋𝑗 ≔ 𝑓𝑗 pa𝑗 , 𝑁𝑗 , 𝑗 = 1,… , 𝑑 where pa𝑗 are called parents of 𝑋𝑗, and 
a joint distr. 𝑃𝐍 = 𝑃𝑁1,…,𝑁𝑑

over the noise variables, which we require to be jointly independent.

• The joint indep. requirement on 𝐍 comes from the Independent Mechanism Principle (the right block).

• Causal graph 𝒢: the Directed Acyclic Graph constructed based on the assignments.

• Proposition 6.3 (Entailed distributions) An SCM ℭ defines a unique distribution over the 
variables 𝐗 = 𝑋1, … , 𝑋𝑑 such that 𝑋𝑗 = 𝑓𝑗 pa𝑗 , 𝑁𝑗 , 𝑗 = 1,… , 𝑑, in distribution, called the 
entailed distribution 𝑃𝐗

ℭ and sometimes write 𝑃𝐗.

• Implications of an SCM:



Structural Causal Models
Describing interventions using SCMs.
• “What if 𝑋 was set to 𝑥?””What if patients took the treatment?”

• Definition 6.8 (Intervention distribution) Consider an SCM ℭ ≔ 𝐒, 𝑃𝐍 and its entailed 
distribution 𝑃𝐗

ℭ. We replace one (or several) of the structural assignments to obtain a new SCM 
෩ℭ. Assume that we replace the assignment for 𝑋𝑘 by: 𝑋𝑘 ≔ ሚ𝑓 ෦pa𝑘 , ෩𝑁𝑘 , where all the new and 
old noises are required to be jointly independent.
• Atomic/ideal, structural [Eberhardt and Scheines, 2007]/surgical [Pearl, 2009]/independent 

/deterministic [Korb et al., 2004] intervention:

when ሚ𝑓 ෦pa𝑘, ෩𝑁𝑘 puts a point mass on a value 𝑎. Simply write 𝑃𝐗
ℭ;𝑑𝑜 𝑋𝑘≔𝑎

.

• Soft intervention: intervene with a distribution.
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Structural Causal Models
Describing interventions using SCMs.

• Definition 6.12 (Total causal effect) Given an SCM ℭ, there is a total causal effect from 𝑋
to 𝑌, if 𝑋 and 𝑌 are dependent in 𝑃𝐗

ℭ;𝑑𝑜 𝑋≔෩𝑁𝑋 for some r.v. ෩𝑁𝑋.

• Proposition 6.13 (Total causal effects) Equivalent statements given an SCM ℭ:
1. There is a total causal effect from 𝑋 to 𝑌.

2. There are 𝑥 1 and 𝑥 2 such that 𝑃𝑌
ℭ;𝑑𝑜 𝑋≔𝑥 1

≠ 𝑃𝑌
ℭ;𝑑𝑜 𝑋≔𝑥 2

.

3. There is 𝑥 1 such that 𝑃𝑌
ℭ;𝑑𝑜 𝑋≔𝑥 1

≠ 𝑃𝑌
ℭ.

4. 𝑋 and 𝑌 are dependent in 𝑃𝑋,𝑌
ℭ;𝑑𝑜 𝑋≔෩𝑁𝑋 for any ෩𝑁𝑋 with full support.

• Proposition 6.14 (Graphical criteria for total causal effects) Consider SCM ℭ with 
corresponding graph 𝒢.
• If there is no directed path from 𝑋 to 𝑌, then there is no total causal effect.

• Sometimes there is a directed path but no total causal effect.



Structural Causal Models
Describing counterfactuals using SCMs.
• “What if I took the treatment?”

“What would the outcome be had I acted differently at that moment/situation?”

• Intervention {in a given situation/context} / {for a given individual/unit}.
Intervention with a conditional.

• Definition 6.17 (Counterfactuals) Consider SCM ℭ ≔ 𝐒, 𝑃𝐍 . Given some observations 𝐱, 
define a counterfactual SCM by replacing the distribution of noise variables:

ℭ𝐗=𝐱 ≔ 𝐒, 𝑃𝐍
ℭ|𝐗=𝐱

, where 𝑃𝐍
ℭ|𝐗=𝐱

≔ 𝑃𝐍|𝐗=𝐱 (need not be jointly independent anymore).

• “The probability that 𝑍 would have been 7 (say)
had 𝑌 been set to 2 for observation 𝐱”:



Structural Causal Models
Observational implications (SCM as a BayesNet); causality and correlation.
• Definition 6.1 (d-separation). A path 𝑃 is d-separated by a set of nodes 𝐒, iff. 𝑃 either has an 

emitter (→ 𝑋 → or ← 𝑋 →) in 𝐒, or a collider (→ 𝑋 ←) that is not in 𝐒 nor are its descendants.

• • Theorem 6.22 (Equivalence of 
Markov properties). When 𝑃𝐗
has a density.

• (iii) is what we mean by using a 
DAG/BeyesNet to define a joint 
distribution (i.e., the entailed 
distribution by the SCM). Its 
equivalence to (i) means that 
we can read off conditional 
independence assertions of 
this joint distribution from the 
graph.



Structural Causal Models
Observational implications (SCM as a BayesNet); causality and correlation.

• Confounding bias.
• 𝑇 and 𝑌 are correlated if 𝑋 is not given.

• E.g., 𝑇= chocolate consumption, 𝑌= #Nobel prices, 𝑋= development status.

• Simpson’s paradox.
• 𝑇: treatment. 𝑌: recovery. 𝑋: socio-economic status.

• Is the treatment effective for recovery?
𝑝 𝑌 = 1 𝑇 = 1 > 𝑝 𝑌 = 1 𝑇 = 0 , but
𝑝𝑑𝑜 𝑇=1 𝑌 = 1 < 𝑝𝑑𝑜 𝑇=0 𝑌 = 1 .

• 𝑝 𝑌 𝑡 = σ𝑥 𝑝 𝑌 𝑥, 𝑡 𝑝 𝑥 𝑡 :
conditioning on 𝑇 = 1 infers a good 𝑋 thus a higher probability of recovery.
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Structural Causal Models
Observational implications (SCM as a BayesNet); causality and correlation.

• Selection bias.
• 𝐻 and 𝐹 are correlated if secretly/unconsciously conditioned on 𝑅.

• Berkson’s paradox.
• “Why are handsome men such jerks?” [Ellenberg, 2014]

• 𝐻= handsome, 𝐹= friendly, 𝑅= in a relation.

• Single women often date men with 𝑅 = 0. Such men tend to be either not 𝐻 or not 𝑅.

• (spurious correlations).

𝐹

𝑅

𝐻

https://www.tylervigen.com/spurious-correlations


Structural Causal Models
Levels of model according to the prediction ability:

𝑃𝑋
𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐬𝐭𝐢𝐜/𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧𝐚𝐥 𝐦𝐨𝐝𝐞𝐥

(machine learning models)

+ intv. distrs.

𝐢𝐧𝐭𝐞𝐫𝐯𝐞𝐧𝐭𝐢𝐨𝐧𝐚𝐥 𝐦𝐨𝐝𝐞𝐥 (causal graphical models)

+ counterf. statements

𝐜𝐨𝐮𝐧𝐭𝐞𝐫𝐟𝐚𝐜𝐭𝐮𝐚𝐥 𝐦𝐨𝐝𝐞𝐥 (SCMs)

• Interventional model has the utility of a probabilistic/observational model 𝑝 𝑋, 𝑌 :

but cannot determine the interventional distribution 𝑝𝑑𝑜 𝑋=𝑥 𝑌 :

• Example 6.19: Two SCMs that induce the same graph, observational distributions, and 
intervention distributions, could entail different counterfactual statements 
(“probabilistically and interventionally equivalent” but not “counterfactually equivalent”).

𝑋 𝑌 𝑋 𝑌

𝑍

𝑋 𝑌

𝑍

𝑋 𝑌

𝑝 𝑋 𝑝 𝑌 𝑋 𝑝 𝑌 𝑝 𝑋 𝑌 𝑝׬ 𝑧 𝑝 𝑋 𝑧 𝑝 𝑌 𝑧 d𝑧 ׬ 𝑝 𝑧 𝑝 𝑋 𝑧 𝑝 𝑌 𝑋, 𝑧 d𝑧

𝑝 𝑌 𝑥 𝑝 𝑌 𝑝׬ 𝑧 𝑝 𝑌 𝑧 d𝑧 = 𝑝 𝑌 𝑝׬ 𝑧 𝑝 𝑌 𝑥, 𝑧 d𝑧

𝑝 𝑋, 𝑌 =

𝑝𝑑𝑜 𝑋=𝑥 𝑌 =



Structural Causal Models
Levels of model according to the prediction ability:





Causal Inference
• Given an SCM, infer the distribution/outcome of a variable, under an intervention 

or unit-level intervention (counterfactual).
• Estimate causal effect:

• Average treatment effect: 𝔼𝑑𝑜 𝑇=1 𝑌 − 𝔼𝑑𝑜 𝑇=0 𝑌 .

• Individual treatment effect: 𝔼𝑑𝑜 𝑇=1 𝑌|𝑥 − 𝔼𝑑𝑜 𝑇=0 𝑌|𝑥 .

• Estimate the interventional distribution is the key task (counterfactual is the 
conditional in an intervened SCM).



Causal Inference
• Truncated factorization [Pearl, 1993] / G-computation formula [Robins, 1986] / 

manipulation theorem [Spirtes et al., 2000]:

𝑝ℭ;𝑑𝑜 𝑋𝑘≔෩𝑁𝑘 𝑥1, … , 𝑥𝑑 = ෤𝑝 𝑥𝑘 ς𝑗≠𝑘 𝑝
ℭ(𝑥𝑗|𝑥pa𝑗), where ෤𝑝 is the density of ෩𝑁𝑘.

• Almost evident from the interventional SCM.

• Relies on the autonomy/modularity of causality (principle of independence of 
mechanisms):
one causal mechanism does not influence or inform other causal mechanisms.



Causal Inference
• Definition 6.38 (Valid adjustment set, v.a.s) Consider an SCM ℭ over nodes 𝐕. Let 
𝑋, 𝑌 ∈ 𝐕 with 𝑌 ∉ pa𝑋. We call a set 𝑍 ⊆ 𝐕\ 𝑋, 𝑌 a v.a.s for 𝑋, 𝑌 if 
𝑝ℭ;𝑑𝑜 𝑋≔𝑥 𝑦 = σ𝐳𝑝

ℭ 𝑦 𝑥, 𝐳 𝑝ℭ 𝐳 .
• Importance: we can then use the observations of variables in a v.a.s to estimate an 

intervention distribution.

• By the previous result, pa𝑋 is a v.a.s.

• Are there any other v.a.s’s?

𝑍

𝑋 𝑌

𝑍

𝑥 𝑌



Causal Inference

• Proposition 6.41 (Valid adjustment sets) The following 𝐙's are v.a.s's for 𝑋, 𝑌 where 
𝑋, 𝑌 ∈ 𝐗 and 𝑌 ∉ pa𝑋:
1. “Parent adjustment”: 𝐙 ≔ pa𝑋;
2. “Backdoor criterion” (Pearl's admissible/sufficient set): Any 𝐙 ⊆ 𝐗\ 𝑋, 𝑌 with:
• 𝐙 contains no descendant of 𝑋, and
• 𝐙 blocks all paths from 𝑋 to 𝑌 entering 𝑋 through the backdoor (𝑋 ← ⋯𝑌);
3. “Toward necessity” (characterize all v.a.s) [Shpitser et al., 2010; Perkovic et al., 2015]: Any 
𝐙 ⊆ 𝐗\ 𝑋, 𝑌 with:

• 𝐙 contains no nodes (𝑋 excluded) on a directed path from 𝑋 to 𝑌 nor their descendants, and
• 𝐙 blocks all non-directed paths from 𝑋 to 𝑌.



1. “Parent adjustment”: 𝐙 ≔ pa𝑋;
2. “Backdoor criterion” (Pearl's admissible/sufficient set): Any 𝐙 ⊆ 𝐗\ 𝑋, 𝑌 with:
• 𝐙 contains no descendant of 𝑋, and
• 𝐙 blocks all paths from 𝑋 to 𝑌 entering 𝑋 through the backdoor (𝑋 ← ⋯𝑌);
3. “Toward necessity” (characterize all v.a.s): Any 𝐙 ⊆ 𝐗\ 𝑋, 𝑌 with:
• 𝐙 contains no nodes (𝑋 excluded) on a directed path from 𝑋 to 𝑌 nor their descendants, and
• 𝐙 blocks all non-directed paths from 𝑋 to 𝑌.

Causal Inference



Causal Inference
Do-calculus: alternative way to estimate an interventional distribution from observations:

• The three rules of do-calculus: consider disjoint subsets 𝐗, 𝐘, 𝐙,𝐖 from DAG 𝒢.
1. “Insertion/deletion of observations”: 𝑝ℭ;𝑑𝑜 𝐗≔𝐱 𝐲|𝐳,𝐰 = 𝑝ℭ;𝑑𝑜 𝐗≔𝐱 𝐲|𝐰 ,

if 𝐘 and 𝐙 are d-separated by 𝐗,𝐖 in a graph where incoming edges in 𝐗 have been removed.
2. “Action-observation exchange”: 𝑝ℭ;𝑑𝑜 𝐗≔𝐱,𝐙≔𝐳 𝐲|𝐰 = 𝑝ℭ;𝑑𝑜 𝐗≔𝐱 𝐲|𝐳,𝐰 ,

if 𝐘 and 𝐙 are d-separated by 𝐗,𝐖 in a graph where incoming edges in 𝐗 and outgoing edges 
from 𝐙 have been removed.

3. “Insertion/deletion of actions”: 𝑝ℭ;𝑑𝑜 𝐗≔𝐱,𝐙≔𝐳 𝐲|𝐰 = 𝑝ℭ;𝑑𝑜 𝐗≔𝐱 𝐲|𝐰 ,
if 𝐘 and 𝐙 are d-separated by 𝐗,𝐖 in a graph where incoming edges in 𝐗 and 𝐙(𝐖) have 
been removed. Here, 𝐙(𝐖) is the subset of nodes in 𝐙 that are not ancestors of any node in 
𝐖 in a graph that is obtained from 𝒢 after removing all edges into 𝐗.



Causal Inference
Do-calculus: alternative way to estimate an interventional distribution from observations:

• Theorem 6.45 (Do-calculus).
1. The three rules are complete: all identifiable intv. distrs. can be computed by an iterative 

application of these three rules [Huang and Valtorta, 2006, Shpitser and Pearl, 2006] (more 
general than v.a.s).

2. There is an algorithm [Tian, 2002] that is guaranteed [Huang and Valtorta, 2006, Shpitser and 
Pearl, 2006] to find all identifiable intv. distrs.

3. There is a nec. & suff. graphical criterion for identifiability of intv. distrs. [Shpitser and Pearl, 
2006, Corollary 3], based on so-called hedges [see also Huang and Valtorta, 2006].



Causal Inference
Do-calculus: alternative way to estimate an interventional distribution from observations:

• Example 6.46 (Front-door adjustment).

• There is no v.a.s if we do not observe 𝑈.
• But 𝑝ℭ;𝑑𝑜 𝑋≔𝑥 𝑦 is identifiable using the do-calculus if 𝑝ℭ 𝑧 𝑥 > 0:
𝑝ℭ;𝑑𝑜 𝑋≔𝑥 𝑦 = σ𝑧 𝑝

ℭ 𝑧 𝑥 σ𝑥′ 𝑝
ℭ 𝑦|𝑥′, 𝑧 𝑝ℭ 𝑥′ .

• Observing 𝑍 in addition to 𝑋 and 𝑌 reveals causal information nicely.
• Causal relations can be explored by observing the “channel” 𝑍 that carries the “signal” from 𝑋 to 𝑌.



Causal Discovery
Learn a causal model (causal graph of an SCM) from data.

• In most cases, only observational data is available: Observational causal discovery.

Two main-stream methods:

• Conditional Independence (CI) / constraint based methods (PC algorithm).

• Directional methods (additive noise models).



Causal Discovery
CI-based methods.

• Assumption:
• 𝑃𝐗 is Markovian (makes CI assertions as the graph does, in one of the three equiv. forms) and 

faithful (makes no more CI assertions than the graph does).

• The Markov equivalence class is then identifiable (Lemma 7.2; Spirtes et al., 2000).
• Definition 6.24 (Markov equivalence of graphs): Two DAGs are said to be Markov. equiv., if they have 

the same set of distributions Markovian w.r.t them. Equivalently, they have the same set of d-separation.

• Lemma 6.25 (Graphical criteria for Markov equivalence; Verma and Pearl [1991]; Frydenberg [1990]) 
Two DAGs are Markov equiv., iff. they have the same skeleton and the same immoralities (v-structures).



Causal Discovery
CI-based methods.

• Instances:
• Inductive causation (IC) algorithm [Pearl, 2009].

• SGS algorithm (Spirtes, Glymour, Scheines) [Spirtes et al., 2000].

• PC algorithm (Peter Spirtes & Clark Glymour) [Spirtes et al., 2000].



Causal Discovery
CI-based methods.

• Algorithm:
• Estimation of Skeleton:
• Lemma 7.8 [Verma and Pearl, 1991, Lemma 1] (i) Two nodes 𝑋, 𝑌 in a DAG are adjacent, iff. they cannot 

be d-separated by any subset 𝑆 ⊆ 𝐗\ 𝑋, 𝑌 . (ii) If two nodes 𝑋, 𝑌 in a DAG are not adjacent, then they 
are d-separated by either pa𝑋 or pa𝑌.

• IC/SGS: For each pair of nodes 𝑋, 𝑌 , search through all such 𝑆's. 𝑋, 𝑌 are adjacent iff. they are cond. 
dep. given any one of such 𝑆's (i).

• PC: efficient search for 𝑆. Start with a fully connected undirected graph, and traverse over such 𝑆's in 
an order of increasing size. For size 𝑘, one only has to go through 𝑆's that are subsets either of the 
neighbors of 𝑋 or of the neighbors of 𝑌 (inverse negative of (ii)).



Causal Discovery
CI-based methods.

• Algorithm:
• Orientation of Edges:
• For a structure 𝑋 − 𝑍 − 𝑌 with no edge betw. 𝑋, 𝑌 in the skeleton, let 𝐴 be a set that d-separates 
𝑋 and 𝑌. Then the structure can be oriented as 𝑋 → 𝑍 ← 𝑌, iff. 𝑍 ∉ 𝐴.

• More edges can be oriented in order to, e.g., avoid cycles.

• Meek’s orientation rules [Meek, 1995]: a complete set of orientation rules.



Causal Discovery
Additive Noise Models (ANM).

• Philosophy:
Define a family of “particularly natural” conditionals, such that if a conditional can be 
described using this family, then the conditional in the opposite direction cannot be covered 
by this family.

• Determines a causal direction even for two variables with observational data.

• Definition 7.3 (ANMs) We call an SCM ℭ an ANM if the structural assignments are 
of the form 𝑋𝑗 ≔ 𝑓𝑗 pa𝑗 +𝑁𝑗 , 𝑗 = 1,… , 𝑑. Further assume that 𝑓𝑗 's are 
differentiable and 𝑁𝑗 's have strictly positive densities.

• Recall that in defining SCM, the 𝑁𝑗’s are required to be jointly independent, in respect to 
the independent mechanism principle.



Causal Discovery
Additive Noise Models (ANM).

• Philosophy:



Causal Discovery
Additive Noise Models (ANM).

• All the non-identifiable cases of ANMs [Zhang & Hyvarinen, 2009, Thm. 8; Peters et al., 
2014, Prop. 23]:
Consider the bivariate ANM 𝑋 → 𝑌, 𝑌 ≔ 𝑓 𝑋 + 𝑁, where 𝑁 ⊥ 𝑋 and 𝑓 is three times 
differentiable. Assume that 𝑓′ 𝑥 log 𝑝𝑁

′′ 𝑦 = 0 only at finitely many points 𝑥, 𝑦 . 
If there is a backward ANM 𝑌 → 𝑋, then one of the followings must hold:

𝑋 𝑁 𝑓

(i) Gaussian Gaussian linear

(ii) log-mix-lin-exp log-mix-lin-exp linear

(iii), (iv) log-mix-lin-exp one-sided asymptotically exponential, or 
generalized mixture of two exponentials.

strictly monotonic with 
lim

𝑥→∞or −∞
𝑓′ 𝑥 = 0.

(v) generalized mixture of 
two exponentials

two-sided asymptotically exponential strictly monotonic with 
lim

𝑥→∞or −∞
𝑓′ 𝑥 = 0.



Causal Discovery
Common choices of ANMs:

• In multivariate case, even linear Gaussian with equal noise variances is identifiable 
[Peters and Buhlmann, 2014].

• Linear Non-Gaussian Acyclic Models (LiNGAMs) [Thm. 7.6; Shimizu et al., 2006].

• Nonlinear Gaussian Additive Noise Models [Thm. 7.7; Peters et al., 2014, Cor. 31].



Causal Discovery
Learning causal graph with ANMs.

• Score-based methods.
• Maximize likelihood using a greedy search technique (for optimization over the graph space).

• For nonlinear Gaussian ANMs [Buhlmann et al., 2014]:
• Given a current graph 𝒢, regress each var. on its parents and obtain the score log 𝑝 𝒟 𝒢
≔ log 𝑝 𝒟 𝒢, መ𝜃 = −σ𝑗=1

𝑑 ෞvar 𝑅𝑗 , where 𝑅𝑗 ≔ 𝑋𝑗 − መ𝑓𝑗 pa𝑗 is the residual.

• When computing the score of a neighboring graph, utilize the decomposition and update only the 
altered summand.

• It can be shown to be consistent [Buhlmann et al., 2014].

• If the noise cannot be assumed to be Gaussian, one can estimate the noise distr. [Nowzohour and 
Buhlmann, 2016] and obtain an entropy-like score.



Causal Discovery
Learning causal graph with ANMs.

• RESIT [Mooij et al., 2009; Peters et al., 2014]:

Phase 1: Based on the fact that for each node 𝑋𝑖 the 
corresp. 𝑁𝑖 is indep. of all non-desc. of 𝑋𝑖. Particularly, for 
each sink node 𝑋𝑖, 𝑁𝑖 ⊥ 𝐗\ 𝑋𝑖 .

Phase 2: visit every node and eliminate incoming edges 
until the residuals are not indep. anymore.



Causal Discovery
Learning causal graph with ANMs.

• Independence-Based Score [Peters et al., 2014]:
• RESIT is asymmetric, thus mistakes will propagate and accumulate over the iterations.

• Intuition: (i) under 𝒢0, all the residuals are indep. of each other; (ii) causal minimality helps 
identifying a unique DAG:

• res𝑖
𝒢,RM

are the residuals of node 𝑋𝑖 when it is regressed on its parents specified in 𝒢 using 
regression method RM.

• DM denotes a dependence measure. The second term encourages causal minimality.

• ICA-based methods for LiNGAMs [Shimizu et al., 2006; 2011].



Causal Discovery
• CI-based methods.
• More faithful to data.

• Identif. only up to a Markov equiv. class.

• CI test methods may be tricky.

• ANMs.
• A relative strong assumption/belief

(a family is particularly natural for modeling conditionals).

• Identification within a Markov equiv. class.

• Leveraging intervened datasets.
• Based on the invariance principle of causality.

• Identification within a Markov equiv. class.

• Stronger requirement on data.

• [Peters et al., 2016; Romeijn & Williamson, 2018;
Bengio et al., 2019].



Thanks!


