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Introduction

Introduction

Definition (Gradient Flow in Linear Space)

X is a linear space, and F : X → R is smooth. Gradient flow (or steepest
descent curve) is a smooth curve x : R→ X such that

x ′(t) = −∇F (x(t)).

What shall we consider next and where can it be applied?

1 Existence and uniqueness of the solution
Since many PDEs are in the form of a gradient flow, the analysis can be
applied to them.

Example

For X = L2(Rn), a Hilbert space, and for Dirichlet energy
F (u) = 1

2

∫
|∇u(x)|2dx , the Heat Equation ∂tu = ∇2u is a gradient flow

problem.
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Introduction

Introduction

Definition (Gradient Flow in Linear Space)

X is a linear space, and F : X → R is smooth. Gradient flow (or steepest
descent curve) is a smooth curve x : R→ X such that

x ′(t) = −∇F (x(t)).

What shall we consider next and where can it be applied?

2 Numerical methods and their convergence
Since gradient flow gradually minimizes F (x), so many optimization
methods are related to it, e.g. gradient descent, proximal descent
methods, mirror descent.
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Introduction

Introduction

What shall we consider next and where can it be applied?

3 Generalization to the gradient flow on general metric space.

The need of viewing PDEs as gradient flows on general metric spaces,
thus wider applicability.

Example

PDEs in the continuity equation form ∂tρ−∇ · (ρv) = 0, where v = ∇[δF/δρ], can
be cast as a gradient flow on the space of probabilities with Wasserstein distance.

Heat Equation can also be viewed as a gradient flow in the Wasserstein space.

The need of minimizing functionals on metric space.

Example

Optimization w.r.t. probability distributions, e.g. minq KL(q||p). Optimization
without parameterization is possible! (e.g. Stein Variational Gradient Descent)
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Gradient flow in the Euclidean space Variants of Gradient Flow in the Euclidean Space

Existence, Uniqueness and Variants

Variant 0: F : Rn → R is differentiable (Cauchy Problem):{
x ′(t) = −∇F (x(t)), for t > 0,
x(0) = x0.

Theorem

∃! solution if ∇F is Lipschitz.
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Gradient flow in the Euclidean space Variants of Gradient Flow in the Euclidean Space

Existence, Uniqueness and Variants

Variant 1: F is convex and unnecessarily differentiable:{
x ′(t) ∈ −∂F (x(t)), for a.e. t > 0,
x(0) = x0,

where x is an absolutely continuous curve, and
∂F (x) = {p ∈ Rn : ∀y ∈ Rn,F (y) ≥ F (x) + p · (y − x)}.

Theorem

Any two solutions x1, x2 of the above problem with different initial
conditions satisfy |x1(t)− x2(t)| ≤ |x1(0)− x2(0)|.

Corollary

For a given initial condition, the above problem has one unique solution.
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Gradient flow in the Euclidean space Variants of Gradient Flow in the Euclidean Space

Existence, Uniqueness and Variants

Variant 2: F is semi-convex (λ convex)

Definition (λ-convex function)

F is λ-convex (λ ∈ R) if F (x)− λ
2 |x |

2 is convex.

{
x ′(t) ∈ −∂F (x(t)), for a.e. t > 0,
x(0) = x0,

where x is an absolutely continuous curve, and
∂F (x) = {p ∈ Rn : ∀y ∈ Rn,F (y) ≥ F (x) + p · (y − x) + λ

2 |y − x |2}.

Theorem

Any two solutions x1, x2 of the above problem with different initial
conditions satisfy |x1(t)− x2(t)| ≤ e−λt |x1(0)− x2(0)|.
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Gradient flow in the Euclidean space Variants of Gradient Flow in the Euclidean Space

Existence, Uniqueness and Variants

Variant 2: F is semi-convex (λ-convex)

Theorem

Any two solutions x1, x2 of the above problem with different initial
conditions satisfy |x1(t)− x2(t)| ≤ e−λt |x1(0)− x2(0)|.

Corollary

For a given initial condition, the above problem has one unique solution.

If λ > 0 (strong convex), F has a unique minimizer x∗. x(t) ≡ x∗ is a
solution, so for any solution x(t), |x(t)− x∗| ≤ e−λt |x(0)− x∗|.
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Gradient flow in the Euclidean space Approximating Curves

Definition (MMS)

Minimizing Movement Scheme (MMS): for a fixed small time step τ ,
define a sequence {xτk }k by

xτk+1 ∈ arg min
x

F (x) +
|x − xτk |2

2τ
.

Importance:

Practical numerical method for approximating the curve.

Easier generalization to metric space, than x ′ = −∇F (x) itself.

Properties:

Existence of solution for mild F (e.g. Lipschitz and lower bounded by
C1 − C2|x |2).
xτk+1−x

τ
k

τ ∈ −∂F (xτk+1): implicit Euler scheme (more stable but hard
than explicit one: gradient descent)
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Gradient flow in the Euclidean space Approximating Curves

Convergence:

Define v τk+1 , (xτk+1 − xτk )/τ , and v τ (t) = v τk+1, t ∈ (kτ, (k + 1)τ ].
Define two kinds of interpolations:
1) xτ (t) = xτk , t ∈ (kτ, (k + 1)τ ];
2) x̃τ (t) = xτk + (t − kτ)v τk+1, t ∈ (kτ, (k + 1)τ ].

x̃τ is continuous and (x̃τ )′ = v τ ;
xτ is not continuous, but v τ (t) ∈ −∂F (xτ (t)).

Theorem

If F (x0) < +∞ and inf F > −∞, then up to a subsequence τj → 0, both
x̃τj and xτj converge uniformly to a same curve x ∈ H1(Rn) and v τj

weakly converges in L2(R;Rn) to a vector function v s.t. x ′ = v and
1) v(t) ∈ ∂F (x(t)) a.e., if F is λ-convex;
2) v(t) = −∇F (x(t)),∀t, if F is C 1.
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F (x0) < +∞ and inf F > −∞, then up to a subsequence τj → 0, both
x̃τj and xτj converge uniformly to a same curve x ∈ H1(Rn) and v τj

weakly converges in L2(R;Rn) to a vector function v s.t. x ′ = v and
1) v(t) ∈ ∂F (x(t)) a.e., if F is λ-convex;
2) v(t) = −∇F (x(t)),∀t, if F is C 1.

Details:

1 Lp space

For a measure space (S ,Σ, µ), first define
L(S ;Rn) , {f : S → Rn|

∫
S
|f |pdµ <∞}. It is a linear space.

Define Lp(S ;Rn) , L(S ;Rn)/{f |f = 0 µ-a.e.} to be a quotient space
(i.e. treat all functions that are equal µ-a.e. as one same element in Lp).

Define ‖f ‖p ,
(∫

S
|f |pdµ

)1/p
, then for 1 ≤ p ≤ ∞ it is a Banach space.

Only L2(S ;Rn) can be a Hilbert space, with inner product
〈f , g〉L2(S ;Rn) ,

∫
S

fgdµ.

Lp(S) , Lp(S ;R).
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F (x0) < +∞ and inf F > −∞, then up to a subsequence τj → 0, both
x̃τj and xτj converge uniformly to a same curve x ∈ H1(Rn) and v τj

weakly converges in L2(R;Rn) to a vector function v s.t. x ′ = v and
1) v(t) ∈ ∂F (x(t)) a.e., if F is λ-convex;
2) v(t) = −∇F (x(t)),∀t, if F is C 1.

Details:

2 Weak convergence in a Hilbert space H:

xn ∈ H, n ≥ 1, x ∈ H, xn ⇀ x is defined as:
∀f ∈ H′, f (xn)→ f (x).
⇐⇒
∀y ∈ H, 〈xn, y〉H → 〈x , y〉H.
xn → x =⇒ xn ⇀ x .
xn ⇀ x , ‖xn‖ → ‖x‖ =⇒ xn → x .
If dim(H) ≤ ∞, xn ⇀ x ⇐⇒ xn → x .
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F (x0) < +∞ and inf F > −∞, then up to a subsequence τj → 0, both
x̃τj and xτj converge uniformly to a same curve x ∈ H1(Rn) and v τj

weakly converges in L2(R;Rn) to a vector function v s.t. x ′ = v and
1) v(t) ∈ ∂F (x(t)) a.e., if F is λ-convex;
2) v(t) = −∇F (x(t)),∀t, if F is C 1.

Details:
3 Hk(Ω) space (Ω ⊂ Rn)

Weak derivative. For u ∈ C k(Ω) and φ ∈ C∞c (Ω) (·c for compact
support), ∫

Ω

uDαφdx = (−1)|α|
∫

Ω

φDαudx , (Integral by parts)

where Dα = ∂α1
x1
· · · ∂αn

xn , and |α| =
∑n

i=1 αi is fixed as k. So define the
weak α-th partial derivative of u as v :∫

Ω

uDαφdx = (−1)|α|
∫

Ω

φvdx ,∀φ ∈ C∞c (Ω).

If it exists, it is uniquely defined a.e.
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Gradient flow in the Euclidean space Approximating Curves

3 Hk(Ω) space (Ω ⊂ Rn)
Weak derivative. For u ∈ C k(Ω) and φ ∈ C∞c (Ω) (·c for compact
support), ∫

Ω

uDαφdx = (−1)|α|
∫

Ω

φDαudx , (Integral by parts)

where Dα = ∂α1
x1
· · · ∂αn

xn , and |α| =
∑n

i=1 αi is fixed as k. So define the
weak α-th partial derivative of u as v :∫

Ω

uDαφdx = (−1)|α|
∫

Ω

φvdx ,∀φ ∈ C∞c (Ω).

If it exists, it is uniquely defined a.e.
Sobolev space W k,p(Ω) for k ∈ N and p ∈ [1,∞]:

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω),∀|α| ≤ k},
with norm:

‖u‖W k,p(Ω) =

{ (∑
|α|≤k ‖Dαu‖pLp(Ω)

)1/p

, 1 ≤ p < +∞,
max|α|≤k ‖Dαu‖L∞(Ω), p = +∞.

.

W k,p(Ω) is a Banach space.
Hk(Ω) , W k,2(Ω). They are Hilbert spaces.
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F (x0) < +∞ and inf F > −∞, then up to a subsequence τj → 0, both
x̃τj and xτj converge uniformly to a same curve x ∈ H1(Rn) and v τj

weakly converges in L2(R;Rn) to a vector function v s.t. x ′ = v and
1) v(t) ∈ ∂F (x(t)) a.e., if F is λ-convex;
2) v(t) = −∇F (x(t)),∀t, if F is C 1.

Details:

4 Up to a subsequence
There exists a sequence τj → 0 s.t. x̃τj and xτj uniformly converge and
v τj weakly converge.
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F (x0) < +∞ and inf F > −∞, then up to a subsequence τj → 0, both
x̃τj and xτj converge uniformly to a same curve x ∈ H1(Rn) and v τj

weakly converges in L2(R;Rn) to a vector function v s.t. x ′ = v and
1) v(t) ∈ ∂F (x(t)) a.e., if F is λ-convex;
2) v(t) = −∇F (x(t)),∀t, if F is C 1.

Proof sketch:
|xτk+1−x

τ
k |

2

2τ ≤ F (xτk )− F (xτk+1)

=⇒
∑`

k=0
|xτk+1−x

τ
k |

2

2τ ≤
(
F (xτ0 )− F (xτ`+1)

)
≤ C for F (x0) < +∞ and

inf F > −∞
=⇒

∫ T
0

1
2 |(x̃τ )′(t)|2dt ≤ C

=⇒ x̃τ is bounded in H1 and v τ in L2, and the injection H1 ⊂ C 0,1/2 gives
an equicontinuity bound on x̃τ of the form |x̃τ (t)− x̃τ (s)| ≤ C |t − s|1/2

=⇒ According to the AA theorem, xτ has a uniformly converging
subsequence.
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Gradient flow in the Euclidean space Characterizing Properties

Motivation

x ′ = −∇F (x) (or x ′ ∈ −∂F (x)) is hard to generalize to metric space!
There is nothing but distance in metric space, so ∇F (x) or ∂F (x)
cannot be defined! (different from manifold)

Use two properties of gradient flow that can characterize it and can
be generalized to metric space.
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Gradient flow in the Euclidean space Characterizing Properties

Two charactering properties of gradient flow in Rd :

Energy Dissipation Equality (EDE) for F ∈ C 1(Ω),Ω ⊂ Rn:

F (x(s))−F (x(t)) =

∫ t

s

(
1

2
|x ′(r)|2 +

1

2
|∇F (x(r))|2

)
dr ,∀0 ≤ s < t ≤ 1.

is equivalent to x ′ = −∇F (x). Note it is equivalent even for “≥” (i.e.
“≥” ⇐⇒ “=”).

Evolution Variational Inequality (EVI) for λ-convex function F :

d

dt

1

2
|x(t)− y |2 ≤ F (y)− F (x(t))− λ

2
|x(t)− y |2, ∀y ∈ X

is equivalent to x ′(t) ∈ −∂F (x(t)).

Sometimes also denoted as EVIλ.
It is important for establishing the uniqueness and stability of gradient
flow.
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Gradient Flow in Metric Spaces Generalization of Basic Concepts

For metric space (X , d),

Definition

Metric derivative of a curve ω : [0, 1]→ X

|ω′|(t) = lim
h→0

d(ω(t + h), ω(t))

|h|
,

if the limit exists.

If ω is Lipschitz, |ω′|(t) exists for a.e. t ∈ [0, 1].

d(ω(t0), ω(t1)) ≤
∫ t1

t0
|ω′|(s)ds.
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Gradient Flow in Metric Spaces Generalization of Basic Concepts

For metric space (X , d),
In (X , d), ω′ cannot be defined, but |ω′| can.

Definition

ω : [0, 1]→ X is absolutely continuous if ∃g ∈ L1([0, 1]) s.t.

d(ω(t0), ω(t1)) ≤
∫ t1

t0

g(s)ds,∀t0 < t1.

Let AC(X ) be the set of such curves.

AC ⇒ Lipschitz

AC ⇒ Metric derivative exists a.e.
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Gradient Flow in Metric Spaces Generalization of Basic Concepts

For metric space (X , d),

Definition

Length of the curve ω : [0, 1]→ X :

Length(ω) , sup

{
n−1∑
k=0

d(ω(tk), ω(tk+1)) : n ≥ 1, 0 = t0 < · · · < tn = 1

}
.

If ω ∈ AC(X ), Length(ω) =
∫ 1

0 |ω
′|(t)dt.
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Gradient Flow in Metric Spaces Generalization of Basic Concepts

For metric space (X , d),

Definition

Geodesic between x0 and x1 in X : a curve ω s.t. ω(0) = x0, ω(1) = x1,
and Length(ω) = minω̃{Length(ω̃) : ω̃(0) = x0, ω̃(1) = x1}.

This is the generalization of straight lines in Rn, and is used to extend
convexity.

Definition

Length space: metric space (X , d) s.t.
∀x , y ∈ X , d(x , y) = infω∈AC(X ){Length(ω) : ω(0) = x , ω(1) = y}.
Geodesic space: length space and geodesic exists for any pair of
points.

Riemann manifolds are geodesic spaces.
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Gradient Flow in Metric Spaces Generalization of Basic Concepts

For geodesic space (X , d),

Definition

Geodesic convexity: in a geodesic metric space, a function F : X → R
that is convex along geodesics:

F (x(t)) ≤ (1− t)F (x(0)) + tF (x(1)),

where x(t) is a geodesic joining x(0) and x(1).

λ-geodesic convexity in a geodesic metric space, a function
F : X → R that is λ-convex along geodesics:

F (x(t)) ≤ (1− t)F (x(0)) + tF (x(1))− λ t(1− t)

2
d2(x(0), x(1)).

Chang Liu (THU) Gradient Flow April 24, 2017 31 / 91



Gradient Flow in Metric Spaces Generalization of Basic Concepts

For metric space (X , d),

Definition

g : X → R is an upper gradient of F : X → R: for every Lipschitz
curve x ,

|F (x(0))− F (x(1))| ≤
∫ 1

0
g(x(t))|x ′|(t)dt.

Local Lipschitz constant of F :

|∇F |(x) = lim sup
y→x

|F (x)− F (y)|
d(x , y)

.

Descending slope (or just slope) of F :

|∇−F |(x) = lim sup
y→x

[F (x)− F (y)]+
d(x , y)

.

If F is Lipschitz, |∇F | is an upper gradient.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (EDE-GF)

Let (X , d) be a metric space, F : X → R and g : X → R is an upper
gradient of F . EDE-GF is a curve x : [0, 1]→ X with metric derivative a.e.
such that:

F (x(s))− F (x(t)) =

∫ t

s

(
1

2
|x ′(r)|2 +

1

2
g(x(r))2

)
dr ,∀0 ≤ s < t ≤ 1.

Existence is easy to guarantee.

Not enough to guarantee uniqueness.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (EVI-GF)

Let (X , d) be a geodesic space, F : X → R is λ-geodesically convex.
EVI-GF is a curve x : [0, 1]→ X such that:

d

dt

1

2
d(x(t), y)2 ≤ F (y)− F (x(t))− λ

2
d(x(t), y)2,∀y ∈ X .

EVI-GF ⇒ EDE-GF
Uniqueness and contractivity: for two EVI-GFs x(t) and y(s),

d

dt

1

2
d(x(t), y(s))2 ≤ F (y(s))− F (x(t))− λ

2
d(x(t)), y(s))2,

d

ds

1

2
d(x(t), y(s))2 ≤ −F (y(s)) + F (x(t))− λ

2
d(x(t)), y(s))2.

Define E (t) = 1
2 d(x(t), y(t))2, then d

dt E (t) ≤ −2λE (t)
⇒ d(x(t), y(t)) ≤ e−λtd(x(0), y(0)), which gives uniqueness for a
given initial condition and exponential convergence for λ > 0.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (EVI-GF)

Let (X , d) be a geodesic space, F : X → R is λ-geodesically convex.
EVI-GF is a curve x : [0, 1]→ X such that:

d

dt

1

2
d(x(t), y)2 ≤ F (y)− F (x(t))− λ

2
d(x(t), y)2,∀y ∈ X .

A strong condition; existence is hard to guarantee.
A sufficient condition for the existence: Compatible Convexity along
Generalized Geodesics (C2G2):
∀x0, x1 ∈ X , ∀y ∈ X , ∃x : [0, 1]→ X s.t. x(0) = x0, x(1) = x1 and

F (x(t)) ≤ (1− t)F (x0) + tF (x1)− λ t(1− t)

2
d2(x0, x1),

d2(x(t), y) ≤ (1− t)d2(x0, y) + td2(x1, y)− t(1− t)d2(x0, x1),

i.e. λ-convexity of F and 2-convexity of x 7→ d2(x , y) along a same
curve (not necessarily geodesic).
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (Generalized MMS)

Generalization of Minimizing Movement Scheme in a metric space (X , d):
for Lipschitz F : X → R ∪ {+∞}, define

xτk+1 ∈ arg min
x

F (x) +
d(x , xτk )2

2τ
.

Define two kinds of interpolations in a similar way:
1) Define xτ (t) = xτk , t ∈ (kτ, (k + 1)τ ];
2) Define x̃τ (t), t ∈ (kτ, (k + 1)τ ] to be the constant-speed geodesic
between xτk and xτk+1.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.
Define two kinds of interpolations in a similar way:
1) Define xτ (t) = xτk , t ∈ (kτ, (k + 1)τ ];
2) Define x̃τ (t), t ∈ (kτ, (k + 1)τ ] to be the constant-speed geodesic
between xτk and xτk+1. (So we require X to be a length space?)

Definition

Constant-speed geodesic: in a length space, a curve ω : [t0, t1]→ X s.t.

d(ω(t), ω(s)) =
|t − s|
t1 − t0

d(ω(t0), ω(t1)), ∀t, s ∈ [t0, t1].

Constant-speed geodesics are geodesics:
Length(ω) =

∫ t1

t0

d(ω(t0),ω(t1))
t1−t0

dt = d(ω(t0), ω(t1)).
The followings are equivalent:

1 ω : [t0, t1]→ X is a constant-speed geodesic joining x0 and x1;
2 ω ∈ AC(X ) and |ω′|(t) = d(ω(t0),ω(t1))

t1−t0
a.e.;

3 ω ∈ arg min{
∫ t1

t0
|ω′|(t)pdt : ω(t0) = x0, ω(t1) = x1},∀p > 1.

Chang Liu (THU) Gradient Flow April 24, 2017 38 / 91



Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Define two kinds of interpolations in a similar way:
1) Define xτ (t) = xτk , t ∈ (kτ, (k + 1)τ ];
2) Define x̃τ (t), t ∈ (kτ, (k + 1)τ ] to be the constant-speed geodesic
between xτk and xτk+1. (So we require X to be a length space?)

Define v τ . On metric (length) spaces, only its the norm can be
defined: set |v τ | as the piecewise constant speed of x̃τ ,

|v τ |(t) = d(xτk+1, x
τ
k )/τ, t ∈ (kτ, (k + 1)τ ].

Definition (MMS-GF)

Let (X , d) be a metric space (not necessarily length space). A curve
x : [0,T ]→ X is called Generalized Minimizing Movements (GMM) (I
would call it MMS-GF) if there exists a sequence τj → 0 s.t. xτj uniformly
converges to x in (X , d).
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (MMS-GF)

Let (X , d) be a metric space (not necessarily length space). A curve
x : [0,T ]→ X is called (by me) MMS-GF if there exists a sequence
τj → 0 s.t. xτj uniformly converges to x in (X , d).

Existence analysis:

Condition for the existence of xτk :
The sub-level set {x : F (x) ≤ c} is compact in X , and F is Lipschitz.
(The corresponding topology is either the one induced by d , or a weaker topology s.t. d is

lower semi-continuous w.r.t. it.)

Condition for the existence of limit curves (i.e. MMS-GF):
Existence of xτk is enough!

Due to
d(xτk+1,x

τ
k )2

2τ
≤ F (xτk )− F (xτk+1), we have d(xτ (t), xτ (s)) ≤ C(|t − s|1/2 +

√
τ),

i.e. {xτ}τ are equi-Hölder continuous with exponent 1/2 (up to a negligible error of order
√
τ). So by AA theorem, the set {xτ}τ has uniformly converging subsequences, i.e.

MMS-GF. But not unique and no relation with F (EDE or EVI) is obtained.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (MMS-GF)

Let (X , d) be a metric space (not necessarily length space). A curve
x : [0,T ]→ X is called (by me) MMS-GF if there exists a sequence
τj → 0 s.t. xτj uniformly converges to x in (X , d).

To relate MMS-GF to F and other generalizations:

If in addition to “{x : F (x) ≤ c} is compact in X , F is Lipschitz”, F
and |∇−F | are lower-semicontinuous, we have 1

2

∫ t

0
|x ′|(r)2dr

+ 1
2

∫ t

0
|∇−F (x(r))|2dr ≤ F (x(0))− F (x(t)), ∀0 ≤ t ≤ T . (not EDE)

If additionally, the slope |∇−F | is an upper gradient of F , we have
EDE: 1

2

∫ t
s |x

′|(r)2dr + 1
2

∫ t
s |∇

−F (x(r))|2dr ≤
F (x(s))− F (x(t)),∀0 ≤ s < t ≤ T .

If F is λ-geodesically convex, all the conditions are met.
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Conclusion for now

Table: Conclusion of extentions of gradient flow to metric space

Extension Requirement Existence Uniqueness and
Contractivity

EVI-GF X geodesic space,
F λ-geod. convex

Hard. C2G2 is a suffi-
cient condition

Guaranted

EDE-GF X metric space Easy Not guaranteed
MMS-GF X metric space Relatively easy. “{x :

F (x) ≤ c} compact and

F Lipschitz” or “F λ-

geod. convex” suffices

Not guaranteed

EVI-GF ⊂ EDE-GF
MMS-GF ⊂ EDE-GF if “{x : F (x) ≤ c} compact, F Lipschitz, F and

|∇−F | lower-semicont., |∇−F | is an upper grad. of F ” or “F λ-geod.

convex”
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Gradient Flows on Wasserstein Spaces

Recap. of Optimal Transport Problems
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Gradient Flows on Wasserstein Spaces Recap. of Optimal Transport Problems

Recap. of Optimal Transport Problems

Settings
Let X ,Y be two measurable spaces, µ ∈ P(X ) and ν ∈ P(Y ) are
fixed measures, Let c : X × Y → R be a cost function.

Definition (push-forward of a measure)

For a measurable function T : X → Y and a measure µ ∈ P(X ), define
the push-forward of µ under T , T#µ, to be a measure on Y s.t.

T#µ(A) = µ(T−1(A)),∀A ∈ σ-algebra of Y .

Example

For X = Y = Rn and T invertible, then in terms of p.d.f.,
T#µ = (µ ◦ T−1)|det(∇T−1)|, i.e. rule of change of variables.
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Recap. of Optimal Transport Problems

Monge’s Problem:

(MP) inf
T#µ=ν

∫
X

c(x ,T (x))dµ(x).

(Optimal) T is called a (optimal) transport map.
The problem may not be feasible.

Kantorovich’s Problem:

(KP) inf
γ∈Π(µ,ν)

∫
X×Y

c(x , y)dγ(x , y),

where Π(µ, ν) , {γ|(πX )#γ = µ, (πY )#γ = ν}.
(Optimal) γ is called a (optimal) transport plan.
The problem is always feasible.

MP is a special case of KP, where γ is restricted to the form
γ = (id× T )#µ. If T ∗ exists, γ∗ = (id× T ∗)#µ is also optimal.
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Recap. of Optimal Transport Problems

Dual Kantorovich Problem:

Direct form:

(DKP) sup
φ∈L1(X ),ψ∈L1(Y ),
φ(x)+ψ(y)≤c(x,y)

∫
X

φdµ+

∫
Y

ψdν.

Reformulation:

Definition

c-transform (c-conjugate) of χ : X → R̄, χc : Y → R̄, is defined as
χc(y) , infx∈X c(x , y)− χ(x).

Ψc(X ) , {χc |χ : X → R̄}. ψ : Y → R̄ is c-concave if ψ ∈ Ψc(X ).

(DKP ′) sup
φ∈Ψc (X )

∫
X

φdµ+

∫
Y

φcdν.
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Recap. of Optimal Transport Problems

Dual Kantorovich Problem:

Reformulation:

(DKP ′) sup
φ∈Ψc (X )

∫
X

φdµ+

∫
Y

φcdν.

Definition (Kantorovich potential)

The optimal φ of (DKP0′) is called Kantorovich potential, denoted by ϕ.

When c is uniformly continuous (e.g. when c is continuous and X is
compact), then the existence of Kantorovich potential ϕ can be proven
(by AA theorem).

Remark

Strong duality holds: KP(µ, ν) = DKP(µ, ν).
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Recap. of Optimal Transport Problems

Dual Kantorovich Problem:

Special case 1: X = Y , c(x , y) = d(x , y) is a distance:

(DKP1) sup
φ∈Lip1

∫
X

φdµ−
∫
X

φdν.

Special case 2: X = Y = Ω ⊂ Rn and c(x , y) = 1
2 |x − y |2:

Theorem

For quadratic cost and Ω ⊂ Rn close, bounded and connected, ∃! optimal
transport plan γ∗ for (KP).

Additionally, if µ is absolutely continuous, optimal transport map T ∗ exists and
γ∗ = (id,T ∗)#µ. Moreover, there exists a Kantorovich potential ϕ s.t. ∇ϕ is

unique µ-a.e, and T = ∇u a.e., where u(x) , x2

2
− φ(x) is convex.
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Recap. of Optimal Transport Problems

Dual Kantorovich Problem:

Special case 2: X = Y = Ω ⊂ Rn and c(x , y) = 1
2 |x − y |2:

Theorem

For quadratic cost and Ω ⊂ Rn close, bounded and connected, ∃! optimal
transport plan γ∗ for (KP).

Additionally, if µ is absolutely continuous, optimal transport map T ∗ exists and
γ∗ = (id,T ∗)#µ. Moreover, there exists a Kantorovich potential ϕ s.t. ∇ϕ is

unique µ-a.e, and T = ∇u a.e. where u(x) , x2

2
− φ(x) is convex.

Corollary

Under the same condition, any gradient of a convex function is an optimal map
between µ and its image measure.

Optimal transport map uniquely exists for c(x , y) = h(x − y) with h strictly
convex. (e.g. |x − y |p, p > 1).
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Gradient Flows on Wasserstein Spaces
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Gradient Flows on Wasserstein Spaces The Wasserstein Space

The Wasserstein Space

Definition

On metric space (X , d), for p ≥ 1 and a fixed point x0 ∈ X , define
mp(µ) ,

∫
X d(x , x0)pdµ(x), and Pp(X ) , {µ ∈ P(X ) : mp(µ) < +∞},

which is independent of the choice of x0.

Theorem

Wp(µ, ν) ,
(
infγ∈Π(µ,ν)

∫
X d(x , y)pdγ(x , y)

)1/p
is a distance on Pp(X )

Definition (Wasserstein space)

Wp(X ) , (Pp(X ),Wp).
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The Wasserstein Space

Definition (Wasserstein space)

Wp(X ) , (Pp(X ),Wp).

Theorem

In Wp(X ) with p ≥ 1, given µ, µn ∈ Pp(X ), n ∈ N, the followings are
equivalent:

µn → µ w.r.t. Wp;

µn ⇀ µ and mp(µn)→ mp(µ);∫
X φdµn →

∫
X φdµ, ∀φ ∈{

φ ∈ C 0(X ) : ∃A,B ∈ R s.t. |φ(x)| ≤ A + Bd(x , x0)p, ∀x , x0 ∈ X
}

.
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The Wasserstein Space

Special cases:

Case 1: (X , d) is compact.

P(X ) = Pp(X ),∀p ≥ 1.
µn → µ w.r.t. Wp ⇐⇒ µn ⇀ µ.

Case 2: X = Ω ⊂ Rd and p ∈ [1,+∞). c(x , y) = ‖x − y‖p.

Lp distance between p.d.f.s of two measures: “vertical” distance. Wp

distance between two measures: “horizontal” distance.
p1 ≤ p2 =⇒Wp1 ≤Wp2 . If Ω is bounded, Wp1 ≤Wp2 =⇒ p1 ≤ p2.
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The Wasserstein Space

Geodesic on Wp(Ω):

Theorem (McCann’s displacement interpolation)

If Ω ∈ Rd is convex, then Wp(Ω) is a length space, and for
µ, ν ∈Wp(Ω) and γ as optimal transport plan from µ to ν, then

µγ(t) , (πt)#γ,where πt(x , y) , (1− t)x + ty ,

is a constant-speed geodesic.

If p > 1, then all the constant-speed geodesics are of this form.

If additionally µ is absolutely continuous, then there is only one
geodesic, whose form is

µt = (Tt)#µ,where Tt , (1− t)id + tT ,

where T is the optimal transport map from µ to ν.
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The Wasserstein Space

Geodesic convexity in W2(Ω) (displacement convexity):

Definition is given by the general gradient flow theory.
Important examples:

Definition (Important functionals on W2(Ω))

For f : R→ R convex, V : Ω→ R, W : Rd → R symmetric
(W (x) = W (−x)), define

F(ρ) =

∫
f (ρ(x))dx ,V(ρ) =

∫
V (x)dρ,W =

1

2

∫∫
W (x−y)dρ(x)dρ(y).

Theorem

λ-convexity on Ω of V (or W ) =⇒ λ-geodesic convexity on W2(Ω) of V (or
W).

f (0) = 0 and sd f (s−d) is convex and decreasing, Ω is convex, 1 < p <∞
=⇒ F is geodesically convex in W2(Ω).

Examples of such f : f (t) = tq, q > 1; f (t) = t log t;
f (t) = −tm, 1− 1

d ≤ m < 1.
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Curves/flows on Wp(Ω),Ω ⊂ Rn

Continuity equation:
What is special for Wp(Ω), is that it is of probability distributions. The
curve/flow/dynamics in Wp(Ω), µt , represents the evolution of
distributions. This evolution can be associated with (viewed as a result of)
an evolution/dynamics in Rn, represented by vector field vt . The typical
relation between them is the continuity equation:

∂tµt +∇ · (vtµt) = 0.
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Curves/flows on Wp(Ω),Ω ⊂ Rn

Theorem

Let p > 1, Ω ⊂ Rd open, bounded and connected.

Let {µt}t∈[0,1] be an AC curve in Wp(Ω). Then for a.e. t ∈ [0, 1]

there exists a vector field vt ∈ Lp(µt ;Rd) s.t. 1)
∂tµt +∇ · (vtµt) = 0 is satisfied in the sense of distributions; 2) for
a.e. t ∈ [0, 1], ‖vt‖Lp(µt) ≤ |µ′|(t).

Conversely, if {µt}t∈[0,1] ⊂ Pp(Ω) and ∀t we have a vector field

vt ∈ Lp(µt ;Rd) with
∫ 1

0 ‖vt‖Lp(µt)dt < +∞ solving
∂tµt +∇ · (vtµt) = 0, then {µt}t∈[0,1] is AC in W(Ω) and for a.e.
t ∈ [0, 1], |µ′|(t) ≤ ‖vt‖Lp(µt).

Thus in both cases, the conclusion can be strengthened with
|µ′|(t) = ‖vt‖Lp(µt).

(I guess v i
t : Ω→ R, 1 ≤ i ≤ d satisfies |v i

t |p is µt-integrable, and

‖vt‖Lp(µt) =
(∑d

i=1

∫
Ω |v

i
t (x)|pdµt(x)

)1/p
.)
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Gradient Flows on W2(Ω),Ω ⊂ Rn

We only consider absolutely continuous measures, denoted by ρ, so
that distribution density can be accessed.
Let F : W2(Ω)→ R̄ be a functional on Ww (Ω). Use MMS-GF to
define the gradient flow w.r.t. F :

ρτk+1 ∈ arg min
ρ

F (ρ) +
W 2

2 (ρ, ρτk)

2τ

General existence conditions apply, e.g. {ρ : F (ρ) ≤ c} compact and
F Lipschitz, or F λ-geodesically convex.
Special result:

Theorem

Let F : W2(Ω)→ R̄ be λ-geodesically convex, then MMS-GF w.r.t. F
exists. Let ρ0

t , ρ
1
t be two solutions, and define E (t) , 1

2 W 2
2 (ρ0

t , ρ
1
t ). Then

E (t) ≤ e−λtE (0), which implies uniqueness for a given initial condition,
and stability and exponential convergence for λ > 0.
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Gradient Flows on W2(Ω),Ω ⊂ Rn

To relate F and the vector field vt , we need the notion of first
variation.

Definition (First Variation)

First variation of a functional G : P(Ω)→ R) is defined as δG
δρ (ρ) : Ω→ R

s.t. d
dεG (ρ+ εχ)|ε=0 =

∫
δG
δρ (ρ)(x)dχ(x), ∀χ ∈ {χ : ∃ε0 s.t. ∀ε ∈

[0, ε0], ρ+ εχ ∈ P(Ω)}.

(Recall that on Rd , ∇F ∈ Rd s.t. d
dεF (x + εv)|ε=0 = (∇F , v),∀v ∈ Rd .)

Chang Liu (THU) Gradient Flow April 24, 2017 61 / 91



Gradient Flows on Wasserstein Spaces Gradient Flows on W2(Ω),Ω ⊂ Rn

Gradient Flows on W2(Ω),Ω ⊂ Rn

To relate F and the vector field vt , we need the notion of first
variation.

Definition (Important functionals on W2(Ω))

For f : R→ R convex, V : Ω→ R, W : Rd → R symmetric
(W (x) = W (−x)), define

F(ρ) =

∫
f (ρ(x))dx ,V(ρ) =

∫
V (x)dρ,W =

1

2

∫∫
W (x−y)dρ(x)dρ(y).

Theorem
δF
δρ = f ′(ρ), δVδρ = V , δWδρ = W ∗ ρ (convolution)
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Gradient Flows on W2(Ω),Ω ⊂ Rn

To relate F and the vector field vt , we need the notion of first
variation.

Theorem

The first variation of Wasserstein distance with cost function c:
δWc (ρ,ν)

δρ = ϕ, if ρ, ν are defined on Ω ⊂ Rd , c : Ω× Ω→ R continuous,
and Kantorovich potential ϕ is unique and c-concave.
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Gradient Flows on W2(Ω),Ω ⊂ Rn

Relate F and the vector field vt .

Theorem

For the Minimizing Movement Scheme ρτk+1 ∈ arg minρ F (ρ) +
W 2

2 (ρ,ρτk )
2τ ,

the optimality condition is:
δF

δρ
(ρτk+1) +

ϕ

τ
= const.

where ϕ is the Kantorovich potential from ρτk+1 to ρτk .

Relation between T ∗ and ϕ: T ∗(x) = x −∇ϕ,
relation between vt and T : vt(x) = (x − T (x))/τ ,
so in the limit τ → 0, the gradient flow w.r.t. F induces a flow in Rn:

vt(x) = −∇(
δF

δρ
(ρt))(x),

and the flow ρt in W2(Ω) is:

∂tρt −∇ ·
(
ρt∇

(
δF

δρ
(ρt)

))
= 0.
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Numerical methods from the JKO scheme

JKO: Jordan-Kinderleherer-Otto.

Solve the problem of the form min{F (ρ) + 1
2 W 2

2 (ρ, ν) : ρ ∈ P(Ω)} (τ
is included in F .)

Two recent methods:
1) based on the Benamou-Brenier formula, for convex F (ρ);
2) based on methods from semi-discrete optimal transport, for
geodesically convex F . (involving techniques in computing geometry;
not covered in this slide)
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Benamou-Brenier formula

Theorem (McCann’s displacement interpolation)

If Ω ∈ Rd is convex, for µ, ν ∈Wp(Ω) and γ as optimal transport
plan from µ to ν, then

µγ(t) , (πt)#γ,where πt(x , y) , (1− t)x + ty ,

is a constant-speed geodesic.

If p > 1, then all the constant-speed geodesics are of this form.

If additionally µ is absolutely continuous, then there is only one
geodesic, whose form is

µt = (Tt)#µ,where Tt , (1− t)id + tT ,

where T is the optimal transport map from µ to ν.
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Benamou-Brenier formula

From this theorem, we can see:

For the cost c(x , y) = |x − y |p, find an optimal transport ⇐⇒ find
constant-speed geodesic in Wp, since they are closely related and
(when p > 1 and µ absolutely continuous) they are one-to-one.

Find constant-speed geodesic: minµt
∫ 1

0 |µ
′|(t)pdt.

In Wp, we have |µ′|(t) = ‖vt‖Lp(µt) =
(∫

Ω |vt |
pdµt

)1/p
, where vt is

the velocity field solving the continuity equation.

So, we get the Benamou-Brenier formula (Time-dependent Kantorovich
Problem):

(TKP1) min
(ρt ,vt):ρ0=µ,ρ1=ν,
∂tρt+∇·(vtµt)=0

∫ 1

0

∫
Ω
|vt |pdρtdt.

It is a kinetic energy minimization problem.
It selects constant-speed geodesics connecting µ to ν.
It is non-convex for (ρt , vt).
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Benamou-Brenier formula

(TKP1) min
(ρt ,vt):ρ0=µ,ρ1=ν,
∂tρt+∇·(vtµt)=0

∫ 1

0

∫
Ω
|vt |pdρtdt.

Transform it to convex: let Et = vtρt , and use (ρt ,Et) as arguments:

(TKP2) min
(ρt ,Et):ρ0=µ,ρ1=ν,
∂tρt+∇·Et=0

∫ 1

0

∫
Ω

|Et |p

ρp−1
t

dxdt.
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Benamou-Brenier formula

(TKP2) min
(ρt ,Et):ρ0=µ,ρ1=ν,
∂tρt+∇·Et=0

∫ 1

0

∫
Ω

|Et |p

ρp−1
t

dxdt.

Further transformation:

Kq , {(a, b) ∈ R× Rd : a + 1
q |b|

q ≤ 0} for q = p/(p − 1) conjugate

of p. It is convex in R× Rd .

For t ∈ R and x ∈ Rd , define

fp(t, x) , sup
(a,b)∈Kq

(at + b · x) =


1
p
|x |p
tp−1 , if t > 0

0, if t = 0, x = 0
+∞, if t = 0, x 6= 0, or t < 0.

So the optimization problem can be reformulated as

(TKP3) min
(ρt ,Et):ρ0=µ,ρ1=ν,
∂tρt+∇·Et=0

sup
(a,b)∈

C(Ω×[0,1];Kq)

∫∫
adρ+

∫∫
b · dE ,

where
∫∫

indicates integral w.r.t. both space and time.
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Benamou-Brenier formula

(TKP3) min
(ρt ,Et):ρ0=µ,ρ1=ν,
∂tρt+∇·Et=0

sup
(a,b)∈

C(Ω×[0,1];Kq)

∫∫
adρ+

∫∫
b · dE ,

Utilizing

sup
φ∈C1([0,1]×Ω)

−
∫∫

∂tφdρ−
∫∫
∇φ · dE +

∫
φ1dν −

∫
φ0dµ

=

{
0, if ρ0 = µ, ρ1 = ν, ∂tρt +∇ · Et = 0,
+∞, otherwise.

,

we get

(TKP4) min
(ρt ,Et)

sup
(a,b)∈C(Ω×[0,1];Kq),

φ∈C1([0,1]×Ω)

∫∫
(a− ∂tφ)dρ+

∫∫
(b −∇φ) · dE

+

∫
φ1dν −

∫
φ0dµ.
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Gradient Flows on Wasserstein Spaces Numerical methods from the JKO scheme

Benamou-Brenier formula

(TKP4) min
(ρt ,Et)

sup
(a,b)∈C(Ω×[0,1];Kq),

φ∈C1([0,1]×Ω)

∫∫
(a− ∂tφ)dρ+

∫∫
(b −∇φ) · dE

+

∫
φ1dν −

∫
φ0dµ.

To simplify notation, let m = (ρ,E ), A = (a, b), m · A =
∫

adρ+
∫

b · dE ,
∇t,xφ = (∂tφ,∇φ), G (φ) =

∫
φ1dν −

∫
φ0dµ, IKp(·) be indicator

function, then

(TKP4′) min
m

sup
A,φ

L(m, (A, φ)) , m · (A−∇t,xφ)− IKp(A) + G (φ).

This is a mini-max problem.
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Gradient Flows on Wasserstein Spaces Numerical methods from the JKO scheme

Benamou-Brenier formula

(TKP4′) min
m

sup
A,φ

L(m, (A, φ)) , m · (A−∇t,xφ)− IKp(A) + G (φ).

L(m, (A, φ)) is the Lagrangian of the form L(X ,Y ) = X · ΛY − H(Y ),
where Λ is a linear operator. Its optimality condition{

ΛY = 0
Λ∗X −∇H(Y ) = 0

is the same as the one of the augmented Lagrangian
L̃(X ,Y ) = X · ΛY − H(Y )− r

2 |ΛY |2:{
ΛY = 0
Λ∗X −∇H(Y )− rΛ∗ΛY = 0

,

for any r > 0, and Λ∗ is its adjoint w.r.t. the inner product. So finally,

(TKP5) min
m

sup
A,φ

m · (A−∇t,xφ)− IKp(A) + G (φ)− r

2
‖A−∇t,xφ‖2.
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Gradient Flows on Wasserstein Spaces Numerical methods from the JKO scheme

Benamou-Brenier formula

(TKP5) min
m

sup
A,φ

m · (A−∇t,xφ)− IKp(A) + G (φ)− r

2
‖A−∇t,xφ‖2.

To solve this,

Optimize φ: minimize a quadratic functional in calculus of variations,
e.g. solving a Poisson equation

Optimize A: a pointwise minimization problem, specifically a
projection on the convex set Kq

Optimize m: gradient descent. m← m − r(A−∇t,xφ)
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Application
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Application

Application

To be continued... :(
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My Remarks

My Remarks

Given a functional F (ρ) on W2(Ω) with Ω ⊂ Rn, if we want to minimize
it, we can find a gradient flow on W2(Ω) defined by F , which gradually
minimizes F , by:

1 the MMS discretization with step size τ : we get {ρτk}k , where

ρτk+1 ∈ arg min
ρ

F (ρ) +
W 2

2 (ρ, ρτk)

2τ
.

In this case we directly get a sequence of distributions DIRECTLY,
e.g. in terms of pdf.

2 simulating a dynamics/flow on Ω, which is associated with the
gradient flow on W2(Ω) (or which is the cause/reason of the
evolution of the distribution described by the gradient flow on
W2(Ω)). The dynamics/flow on Ω is governed by

d

dt
ξt(x) = vt(x), vt(x) = −∇

(
δF

δρ
(ρt)

)
(x).

In this case the distribution is embodied as samples from it. We will
get a sequence of samples by simulating the dynamics on Ω.Chang Liu (THU) Gradient Flow April 24, 2017 78 / 91
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My Remarks on SVGD

Afterwards, we will only consider the second approach to get the
gradient flow.

Take F (ρ) = KL(ρ||p), for a fixed distribution p.

Compare the results of gradient flow and variation calculus. (Omit ·t
temporarily)

By Gradient Flow

F (ρ) =
∫

Ω ρ log ρ
pdx , δFδρ = log ρ− log p + 1, so:

v(x) = ∇ log p(x)−∇ log ρ(x).
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My Remarks on SVGD

By Variation Calculus

Find the “directional derivative” G (v , ρ) of F (ρ) w.r.t. the dynamics
d
dt ξt(x) = vt(x):

G (v , ρ) =
d

dε
F (ρ[ξ(ε)])|ε=0, ξ

(ε)(x) = x + εv(x),

ρ[ξ(ε)](x) = ρ(ξ(ε)−1
(x))|Jacξ(ε)−1| ≈ ρ(x − εv(x))|Jac(x − εv(x))|.

For F (ρ) = KL(ρ||p), by my written notes on SVGD or the electronic
notes on R-SVGD, G (v , ρ) =

∫
Ω ρ[∇ log p · v +∇ · v ]dx .

Find v(x) s.t. it maximizes G (v , ρ): maxv G (v , ρ), s.t. ‖v‖ = 1. If
we take the norm as ‖v‖ = 1

2

∑n
i=1

∫
Ω v 2

i (x)ρ(x)dx and introduce
Lagrange multiplier λ,

min
λ

max
v

G (v , ρ) +
λ

2

n∑
i=1

∫
Ω

v 2
i (x)ρ(x)dx − λ.

For F (ρ) = KL(ρ||p), take the first variation w.r.t. vi , i.e. let
∂L
∂vi
−
∑n

j=1 ∂j

(
∂L

∂(∂jvi )

)
= 0:

ρ∂i log p − ∂iρ+ λρvi = 0, vi ∝ ∂i log p − ∂i log ρ,

as the same as the result by gradient flow.

However, in SVGD neither is adopted. It uses v in the space of
vector-valued RKHS and turn the objective as an inner product in it.
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My Remarks

My Remarks on SVGD

By Variation Calculus

Find v(x) s.t. it maximizes G (v , ρ): maxv G (v , ρ), s.t. ‖v‖ = 1. If
we take the norm as ‖v‖ = 1

2

∑n
i=1

∫
Ω v 2

i (x)ρ(x)dx and introduce
Lagrange multiplier λ,

min
λ

max
v

G (v , ρ) +
λ

2

n∑
i=1

∫
Ω

v 2
i (x)ρ(x)dx − λ.

For F (ρ) = KL(ρ||p), take the first variation w.r.t. vi , i.e. let
∂L
∂vi
−
∑n

j=1 ∂j

(
∂L

∂(∂jvi )

)
= 0:

ρ∂i log p − ∂iρ+ λρvi = 0, vi ∝ ∂i log p − ∂i log ρ,

as the same as the result by gradient flow.

However, in SVGD neither is adopted. It uses v in the space of
vector-valued RKHS and turn the objective as an inner product in it.
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My Remarks on General Results

The general equivalence of Gradient Flow and Variation Calculus?

G (v , ρ) =
d

dε
F
(
ρ(x − εv(x))|Jac(x − εv(x))|

)∣∣∣
ε=0

= lim
ε→0

∫
Ω

δF

δρ

(
ρ(x − εv(x))|Jac(x − εv(x))|

)
·
[
− v · ∇ρ(x − εv)|Jac(x − εv)|

+ ρ(x − εv)Tr
(
Jac(x + εv)Jac(v)

)]
dx

=

∫
Ω

δF

δρ

(
ρ(x)

)[
− v · ∇ρ(x) + ρ(x)∇ · v

]
dx .

But this result cannot even recover the case of F (ρ) = KL(ρ||p)! Nor can
it deduce the result of Gradient Flow v = −∇( δFδρ ) by
minλ maxv G (v , ρ) + λ‖v‖ − λ using variation calculus. Why? I would
prefer that there is something wrong in the above deduction of G (v , ρ).
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Appendix

Compactness

A topological space X is compact if each of its open covers has a
finite subcover.

If X is additionally a metric space, then “X is compact” is equivalent
to:

X is sequentially compact: every sequence in X has a convergent
subsequence (the limit is in X , of course).
X is complete and totally bounded (∀ε > 0, X is a subset of the union
of FINITE open balls of radius ε).
X is limit point compact: every infinite subset of X has at least one
limit point in X .
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Appendix

Weak convergence of measures

Let X be a measurable space.
µn ⇀ µ: for any bounded function f : X → R,

∫
f µn →

∫
f µ.
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Appendix

Lower semicontinuity

On a topological space X , f : X → R ∪ {−∞,∞} is lower
semicontinuous at x0 ∈ X if ∀ε > 0, ∃U a neighbourhood of x0 s.t.
∀x ∈ U, f (x) ≥ f (x0)− ε when f (x0) < +∞, and
limx→x0 f (x) = +∞ when f (x0) = +∞.

In metric space, this is equivalent to lim infx→x0 f (x) ≤ f (x0).
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Appendix

Original notion of absolute continuity

I = [a, b] is a compact interval of R (when I is not compact AC can also
be defined, in a more general way). A function f : I → R is absolutely
continuous on I if there exists a Lebesgue integrable function g on I s.t.
f (x) = f (a) +

∫ x
a g(t)dt, ∀x ∈ I .
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Appendix

Hölder space

Hölder condition: on Rd , |f (x)− f (y)| ≤ C‖x − y‖α, with exponent
α.

Hölder space C k,α(Ω): functions on Ω with continuous derivatives up
to order k and kth partial derivatives are Hölder continuous with
exponent 0 < α ≤ 1.

The larger α > 0 the stronger condition. So weaker than Lipschitz
(α = 1).

Compact inclusion C 0,β(Ω)→ C 0,α(Ω), for 0 < α < β ≤ 1.
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Appendix

Equicontinuity

Let X and Y be two metric spaces, and F a family of functions from X to
Y . The family F is equicontinuous at a point x0 ∈ X if ∀ε > 0, ∃δ > 0
s.t. d(f (x0), f (x)) < ε,∀f ∈ F , ∀x : d(x0, x) < δ.

Concept δ depends on

Continuity ε, x0, f
Uniform continuity ε, f

Pointwise equicontinuity ε, x0

Uniform equicontinuity ε
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Appendix

Ascoli-Arzelà’s theorem (AA theorem)

X : a compact Hausdorff space. C (X ): the space of continuous functions
on X .

Typical statement: for a sequence of real-valued continuous functions
{fn}n on a closed and bounded interval [a, b], 1) ∃ uniformly
converging subsequence {fnk}k ⇒ {fn}n is uniformly bounded and
equicontinuous; 2) every subsequence {fnk}k has a uniformly
convergent subsequence ⇒ {fn}n is uniformly bounded and
equicontinuous.
General statement: a subset of C (X ) is compact ⇔ it is closed,
pointwise bounded and (uniformly) equicontinuous.
Very general statement: a subset F of C (X ) is relatively compact in
the topology induced by the uniform norm ⇔ it is equicontinuous and
pointwise bounded.
Corollary: a sequence in C (X ) is uniformly convergent ⇔ it is
(uniformly) equicontinuous and converges pointwise to a function
(not necessarily continuous a-priori).
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Thanks!
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