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Introduction

Introduction

Definition (Gradient Flow in Linear Space)

X is a linear space, and F : X — R is smooth. Gradient flow (or steepest
descent curve) is a smooth curve x : R — X such that

X (t) = —VF(x(t)).

What shall we consider next and where can it be applied?
1 Existence and uniqueness of the solution

Since many PDEs are in the form of a gradient flow, the analysis can be
applied to them.

For X = L?(R"), a Hilbert space, and for Dirichlet energy

F(u) = 3 [ |Vu(x)|?dx, the Heat Equation d;u = V2u is a gradient flow
problem.
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Introduction

Introduction

Definition (Gradient Flow in Linear Space)

X is a linear space, and F : X — R is smooth. Gradient flow (or steepest
descent curve) is a smooth curve x : R — X such that

x'(t) = =VF(x(t)).

What shall we consider next and where can it be applied?

2 Numerical methods and their convergence
Since gradient flow gradually minimizes F(x), so many optimization
methods are related to it, e.g. gradient descent, proximal descent
methods, mirror descent.
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Introduction

Introduction

What shall we consider next and where can it be applied?
3 Generalization to the gradient flow on general metric space.

e The need of viewing PDEs as gradient flows on general metric spaces,
thus wider applicability.

o PDEs in the continuity equation form d:p — V - (pv) = 0, where v = V[6F /dp], can
be cast as a gradient flow on the space of probabilities with Wasserstein distance.

o Heat Equation can also be viewed as a gradient flow in the Wasserstein space.

e The need of minimizing functionals on metric space.

Optimization w.r.t. probability distributions, e.g. ming KL(g||p). Optimization
without parameterization is possible! (e.g. Stein Variational Gradient Descent)
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Existence, Uniqueness and Variants

@ Variant 0: F : R" — R is differentiable (Cauchy Problem):

{ x'(t) = =VF(x(t)),for t > 0,
x(0) = xo.

3! solution if VF is Lipschitz. '
~ Changliu (THU)  GradientFlon  April24,2017 9/091




Gradient flow in the Euclidean space Variants of Gradient Flow in the Euclidean Space

Existence, Uniqueness and Variants

@ Variant 1: F is convex and unnecessarily differentiable:

{ x'(t) € —OF(x(t)),for a.e. t >0,
x(0) = xo,

where x is an absolutely continuous curve, and
OF(x)={peR": ¥y e R" F(y) > F(x)+p-(y — x)}.
Theorem

Any two solutions x1, xo of the above problem with different initial
conditions satisfy |x1(t) — x2(t)] < |x1(0) — x2(0)|.

Corollary

For a given initial condition, the above problem has one unique solution.
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Gradient flow in the Euclidean space Variants of Gradient Flow in the Euclidean Space

Existence, Uniqueness and Variants

@ Variant 2: F is semi-convex (A convex)

Definition (A-convex function)

F is A\-convex (A € R) if F(x) — 3|x|? is convex.

{ x'(t) € —OF(x(t)),for a.e. t >0,
x(0) = xo,

where x is an absolutely continuous curve, and
IF(x) ={p€R":Vy € R", F(y) > F(x) +p- (v — x) + 2ly — x*}.
Theorem

Any two solutions x1, x» of the above problem with different initial
conditions satisfy |x1(t) — xa(t)| < e *t|x1(0) — x2(0)|.
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Gradient flow in the Euclidean space Variants of Gradient Flow in the Euclidean Space

Existence, Uniqueness and Variants

e Variant 2: F is semi-convex (A-convex)

Theorem

Any two solutions x1, xo of the above problem with different initial
conditions satisfy |x1(t) — xa(t)| < e *t|x1(0) — x2(0)|.

Corollary

e For a given initial condition, the above problem has one unique solution.

e If A > 0 (strong convex), F has a unique minimizer x*. x(t) = x* is a
solution, so for any solution x(t), |x(t) — x*| < e=*t|x(0) — x*|.
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Gradient flow in the Euclidean space Approximating Curves

Definition (MMS)
Minimizing Movement Scheme (MMS): for a fixed small time step T,
define a sequence {x] }« by

x = x|?
2T '

Xpy1 € argmin F(x) +
X

Importance:
@ Practical numerical method for approximating the curve.
e Easier generalization to metric space, than x’ = —VF(x) itself.
Properties:
e Existence of solution for mild F (e.g. Lipschitz and lower bounded by
G — Gl|x[?).

° w € —0F(xj,1): implicit Euler scheme (more stable but hard
than explicit one: gradient descent)
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Gradient flow in the Euclidean space Approximating Curves

Convergence:
e Define vi ; £ (x{,1 — Xx¢)/7. and v7(t) = vi 4, t € (k7, (k + 1)7].
Define two kinds of interpolations:
1) x7(t) = x[, t € (kT, (k + 1)7];
2) X7(t) = xj + (t — kT)vi 1, t € (kT, (k + 1)7].
e X7 is continuous and (X7) = v,
xT is not continuous, but v7(t) € —OF (x"(t)).

Theorem

If F(x0) < 400 and inf F > —oo, then up to a subsequence 7; — 0, both
X7 and x converge uniformly to a same curve x € H*(R") and v7i
weakly converges in L2(R;R") to a vector function v s.t. X' = v and

1) v(t) € OF(x(t)) a.e., if F is A\-convex;

2) v(t) = =V F(x(t)),Vt, if F is Ct.
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F(x0) < 400 and inf F > —oo, then up to a subsequence 7; — 0, both
%™ and x converge uniformly to a same curve x € H*(R") and v7i
weakly converges in L?>(R;R") to a vector function v s.t. X' = v and

1) v(t) € OF(x(t)) a.e., if F is A\-convex;

2) v(t) = =V F(x(t)),Vt, if F is C*.

Details:
1 LP space
e For a measure space (S, X, ), first define
L(S;R") £ {f:S = R"| [ |f|Pdu < oo}. It is a linear space.
o Define LP(S;R") £ L(S;R")/{f|f = 0 p-a.e.} to be a quotient space
(i.e. treat all functions that are equal p-a.e. as one same element in LP).
Define ||, = (/s |f|Pdu)1/p, then for 1 < p < oo it is a Banach space.
e Only L2(S;R") can be a Hilbert space, with inner product
(f.g)2(smn = [s fedp.
o LP(S) £ LP(S;R).
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F(x0) < 400 and inf F > —oo, then up to a subsequence 7; — 0, both
X7 and x™ converge uniformly to a same curve x € HY(R") and v™
weakly converges in L?(R;R") to a vector function v s.t. X' = v and

1) v(t) € OF(x(t)) a.e., if F is A-convex;

2) v(t) = =V F(x(t)),Vt, if F is C*.

Details:
2 Weak convergence in a Hilbert space H:

e x, € H,n>1,x € H, x, — x is defined as:
Vf e H, f(x,) — f(x).
<~
Yy € H, (X, ¥)u — (X, ¥)nu-
° Xp = X = X, — X.
Xn = X, [Ixa]] = X = xa — x.
If dim(H) < 00, x, = x <= x, — x.
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F(xo) < 400 and inf F > —oo, then up to a subsequence 7; — 0, both
X7 and x™ converge uniformly to a same curve x € H(R") and v™
weakly converges in L2(R;R") to a vector function v s.t. X' = v and

1) v(t) € OF(x(t)) a.e., if F is A-convex;

2) v(t) = =V F(x(t)),Vt, if Fis C.

Details:
3 H*(Q) space (2 C R")
o Weak derivative. For u € C*(Q) and ¢ € C>() (-, for compact
support),

/ uD®pdx = (—1)l°! / ¢ D udx, (Integral by parts)
Q Q

where D* = 9%t --- 92, and |a| = 3.7 | o is fixed as k. So define the
weak a-th partial derivative of u as v:

/uDa¢dx: (—1)lel / pvdx, Yo € C(RQ).
Q Q

If it exists, it is uniquely defined a.e.
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Gradient flow in the Euclidean space Approximating Curves

3 HX(Q) space (Q C R™)
o Weak derivative. For u € CK(Q) and ¢ € C=(Q) (- for compact
support),

/ uD%pdx = (—1)l*! / @D udx, (Integral by parts)
Q Q

where D* = 9¢1--- 9%, and |a| = Y7 o is fixed as k. So define the
weak a-th partial derivative of u as v:

/uDad)dx: (—l)|a|/¢vdx,V¢ € C(Q).
Q Q
If it exists, it is uniquely defined a.e.
e Sobolev space W*P(Q) for k € N and p € [1,00]:
W P(Q) = {u € LP(Q) : D*u € LP(Q),VY|a| < k},

with norm:

1/p
ullwer(@) = { <Z|a\§k ||Dau||lZp(Q)) , 1< p<+oo,
max|a| <k [|Dul| (o), p = +o0.
W¥*P(Q) is a Banach space.
o H¥(Q) £ W*2(Q). They are Hilbert spaces.
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F(xp) < +o00 and inf F > —oo, then up to a subsequence 7;i — 0, both
X7 and x7 converge uniformly to a same curve x € H*(R") and v7i
weakly converges in L2(R;R") to a vector function v s.t. X' = v and

1) v(t) € OF(x(t)) a.e., if F is A-convex;

2) v(t) = =V F(x(t)),Vt, if Fis C*.

Details:

4 Up to a subsequence
There exists a sequence 7; — 0 s.t. X and x" uniformly converge and
v weakly converge.
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Gradient flow in the Euclidean space Approximating Curves

Theorem

If F(x0) < 400 and inf F > —oo, then up to a subsequence 7; — 0, both
X7 and x™ converge uniformly to a same curve x € HY(R") and v™
weakly converges in L?(R; R") to a vector function v s.t. X' = v and

1) v(t) € OF(x(t)) a.e., if F is A-convex;

2) v(t) = =V F(x(t)),Vt, if Fis C.

Proof ‘sketch: o

Xea1 Xk T T

% < I;_(Xk) - F(Xk+1)
— Yio 5700 < (FOG) = FxEa) < C for Fx) < +00 and
inf F > —o0
— [T L&Y (t)Pdt < C

0 2 =
— X" is bounded in H! and v” in L2, and the injection H! C C%1/2 gives
an equicontinuity bound on X7 of the form |X7(t) — X7(s)| < C|t — s|*/?
= According to the AA theorem, x” has a uniformly converging
subsequence.
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Gradient flow in the Euclidean space Characterizing Properties

Motivation

e X' = —VF(x) (or X' € —0F(x)) is hard to generalize to metric space!
There is nothing but distance in metric space, so VF(x) or 9F(x)
cannot be defined! (different from manifold)

@ Use two properties of gradient flow that can characterize it and can
be generalized to metric space.
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Gradient flow in the Euclidean space Characterizing Properties

Two charactering properties of gradient flow in RY:
e Energy Dissipation Equality (EDE) for F € C1(Q),Q c R":

F(x(s))—F(x(t)) = / (;|x'(r)\2 + ;|VF(x(r))|2> dr¥0<s<t<!

is equivalent to x’ = —VF(x). Note it is equivalent even for “>" (i.e.
> = “:”).
e Evolution Variational Inequality (EVI) for A-convex function F:
d1 A
o Ix(t) = yI* < F(y) = F(x(8)) = SIx(t) -y, ¥y € X
dt 2 2
is equivalent to x'(t) € —OF(x(t)).

e Sometimes also denoted as EVI,.
e It is important for establishing the uniqueness and stability of gradient
flow.

Chang Liu (THU) Gradient Flow April 24, 2017 24 /91



Gradient Flow in Metric Spaces

Gradient Flow in Metric Spaces

Chang Liu (THU) Gradient Flow April 24, 2017 25 /91



Gradient Flow in Metric Spaces Generalization of Basic Concepts

Gradient Flow in Metric Spaces

Generalization of Basic Concepts

Chang Liu (THU) Gradient Flow April 24, 2017 26 /91



Gradient Flow in Metric Spaces Generalization of Basic Concepts

For metric space (X, d),
Definition

Metric derivative of a curve w : [0,1] — X

10 = i, SR8

if the limit exists.

e If w is Lipschitz, |w'|(t) exists for a.e. t € [0, 1].
o d(w(to),w(t1)) < [i |w'|(s)ds.

Chang Liu (THU) Gradient Flow April 24, 2017
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Gradient Flow in Metric Spaces Generalization of Basic Concepts

For metric space (X, d),

In (X, d), w' cannot be defined, but |w'| can.

Definition

w : [0,1] — X is absolutely continuous if 3g € L1([0,1]) s.t.

t1

d(w(to), w(t1)) < / g(s)ds, ¥t < t1.

to

Let AC(X) be the set of such curves.

o AC = Lipschitz

@ AC = Metric derivative exists a.e.
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For metric space (X, d),

Length of the curve w : [0,1] — X:

n—1
Length(w) £ sup {Z d(w(tk),w(tks1)) :n>1,0=ty < - < t, = 1} :
k=0

o If w e AC(X), Length(w) = [ [o/|(t)dt.



Gradient Flow in Metric Spaces Generalization of Basic Concepts

For metric space (X, d),

Definition
Geodesic between xg and x1 in X: a curve w s.t. w(0) = xp, w(1) = xy,
and Length(w) = ming{Length(®) : &(0) = x0,0(1) = x1 }.

This is the generalization of straight lines in R”, and is used to extend
convexity.

Definition
e Length space: metric space (X, d) s.t.
Vx,y € X,d(x,y) = infweAC(X){Length(w) tw(0) = x,w(1) = y}.
@ Geodesic space: length space and geodesic exists for any pair of
points.

Riemann manifolds are geodesic spaces.

Chang Liu (THU) Gradient Flow April 24, 2017
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Gradient Flow in Metric Spaces Generalization of Basic Concepts
For geodesic space (X, d),
Definition

@ Geodesic convexity: in a geodesic metric space, a function F: X — R
that is convex along geodesics:

F(x(t)) < (1 = t)F(x(0)) + tF(x(1)),

where x(t) is a geodesic joining x(0) and x(1).

@ \-geodesic convexity in a geodesic metric space, a function
F : X — R that is A\-convex along geodesics:

Fx(1) < (1 - OF((0) + tF(x(1)) - A~ D e(x(0). x(1)).
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Gradient Flow in Metric Spaces Generalization of Basic Concepts

For metric space (X, d),

Definition
e g: X — Ris an upper gradient of F : X — R: for every Lipschitz
curve X,

1
|F(x(0)) = F(x(1))| S/O g(x(8)IxX'|(t)dt.

@ Local Lipschitz constant of F:

|[VF|(x) = |ir}]/’1_S>)L<lp |F()c(l)(x,y)

@ Descending slope (or just slope) of F:

[V FI(x) = limsup W

If Fis Lipschitz, |[VF| is an upper gradient.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.
Definition (EDE-GF)

Let (X, d) be a metric space, F : X =+ R and g : X — R is an upper
gradient of F. EDE-GF is a curve x : [0,1] — X with metric derivative a.e.
such that:

Fx(s)) ~ F(x(0) = | <;x’(r)|2 " ;g(x(r))2> drMo<s<t<l

@ Existence is easy to guarantee.

@ Not enough to guarantee uniqueness.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (EVI-GF)
Let (X, d) be a geodesic space, F : X — R is A-geodesically convex.
EVI-GF is a curve x : [0,1] — X such that:

¢z
dt 2

d(x(1),y)? < F(y) ~ F(x(8) ~ Sa(x(t),y)2. ¥y € X.

e EVI-GF = EDE-GF

@ Uniqueness and contractivity: for two EVI-GFs x(t) and y(s),
d1 A

715900 ¥(5))* < F(y(s) = F(x(2)) = 5d(x(2)), ¥(5))%,

d1 A

S50, Y()P < ~F(y(s)) + F(x(8) = Sd(x(1)), ¥(5))-
Define E(t) = 1d(x(t), y(t))? then LE(t) < —2XE(t)

= d(x(t),y(t)) < e~ *d(x(0),y(0)), which gives uniqueness for a
given initial condition and exponential convergence for A > 0.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (EVI-GF)

Let (X, d) be a geodesic space, F : X — R is A-geodesically convex.
EVI-GF is a curve x : [0,1] — X such that:

C2d(x(0), ¥ < F(y) — F(x(t) ~ 3d(x(t).y)%. Wy € X.

@ A strong condition; existence is hard to guarantee.
o A sufficient condition for the existence: Compatible Convexity along
Generalized Geodesics (C2G?):

Vxo,x1 € X, Vy € X, 3x:[0,1] = X s.t. x(0) = xp,x(1) = x; and

F(x(£)) < (1 — £)F(x0) + tF(x1) — )\t(lz_ ) 6(x0, 1),

d*(x(t),y) < (1 = t)d*(x0,y) + td*(x1, y) — t(1 — t)d*(x0, x1),
i.e. \-convexity of F and 2-convexity of x — d?(x, y) along a same

curve (not necessarily geodesic).
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (Generalized MMS)

Generalization of Minimizing Movement Scheme in a metric space (X, d):
for Lipschitz F : X — R U {+o0}, define

d(x, x;)?
2T ’

Xjy1 € argmin F(x) +
X

Define two kinds of interpolations in a similar way:

1) Define x7(t) = x[, t € (kr, (k + 1)7];

2) Define X7(t), t € (kT,(k + 1)7] to be the constant-speed geodesic
between x; and x;_ ;.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Define two kinds of interpolations in a similar way:

1) Define x7(t) = x[, t € (kT, (k + 1)7];

2) Define X" (t), t € (kT,(k 4+ 1)7] to be the constant-speed geodesic
between x; and x[ ;. (So we require X to be a length space?)

Definition
Constant-speed geodesic: in a length space, a curve w : [to, t1] — X s.t.

t—s
L= 5] (o), w(tn)), Ve, s € [t0, 1],
tp — to

d(w(t),w(s)) =

@ Constant-speed geodesics are geodesics:
Length(w) = [ l0let) 4¢ — d(w(to), w(t1)).

. to t1— - to
@ The followings are equivalent:
©Q w: [to, t1] — X is a constant-speed geodesic joining xp and x;
@ w e AC(X) and |w'|(t) = dleliole(t)) 4 o -

t1—to
Q@ wearg mln{f W' |()Pdt s w(ty) = xo,w(t1) = x1},Vp > 1.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.
@ Define two kinds of interpolations in a similar way:
1) Define x7(t) = x[, t € (kT, (k + 1)7];
2) Define X7 (t), t € (kT,(k 4+ 1)7] to be the constant-speed geodesic
between x; and x[, ;. (So we require X to be a length space?)
@ Define v7. On metric (length) spaces, only its the norm can be
defined: set |v"| as the piecewise constant speed of X7,

IVT[(t) = d(xgp1, xx)/ 7, t € (kr, (k +1)7].

Definition (MMS-GF)

Let (X, d) be a metric space (not necessarily length space). A curve

x [0, T] — X is called Generalized Minimizing Movements (GMM) (I
would call it MMS-GF) if there exists a sequence 7; — 0 s.t. x™ uniformly
converges to x in (X, d).
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.

Definition (MMS-GF)

Let (X, d) be a metric space (not necessarily length space). A curve
x [0, T] — X is called (by me) MMS-GF if there exists a sequence
7j — 0 s.t. x7 uniformly converges to x in (X, d).

Existence analysis:
@ Condition for the existence of x7:
The sub-level set {x : F(x) < c} is compact in X, and F is Lipschitz.
(The corresponding topology is either the one induced by d, or a weaker topology s.t. d is
lower semi-continuous w.r.t. it.)
e Condition for the existence of limit curves (i.e. MMS-GF):
Existence of x/ is enough!
Due to M < F(xf) = F(x7,1), we have d(x7(t),x"(s)) < C(|t — s|2 + /1),
i.e. {x7}r are equi-Hdlder continuous with exponent 1/2 (up to a negligible error of order
/7). So by AA theorem, the set {x" }, has uniformly converging subsequences, i.e.

MMS-GF. But not unique and no relation with F (EDE or EVI) is obtained.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Three ways to generalize gradient flow to metric space: EDE-GF, EVI-GF,
MMS-GF.
Definition (MMS-GF)

Let (X, d) be a metric space (not necessarily length space). A curve
x [0, T] — X is called (by me) MMS-GF if there exists a sequence
7j — 0 s.t. x7 uniformly converges to x in (X, d).

To relate MMS-GF to F and other generalizations:
e If in addition to “{x : F(x) < ¢} is compact in X, F is Lipschitz", F
and |V~ F| are lower-semicontinuous, we have } [ |x|(r)*dr
+% fot \VfF(X(r))|2dr < F(x(0)) — F(x(t)),¥0 <t < T. (not EDE)
o If additionally, the slope |V~ F| is an upper gradient of F, we have
EDE: 3 [ [X|(r)2dr + 5 [F IV~ F(x(r))2dr <
F(x(s)) — F(x(t)),Y0<s<t<T.

e If F is A-geodesically convex, all the conditions are met.
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Gradient Flow in Metric Spaces Generalization of Gradient Flow to Metric Spaces

Conclusion for now

Table: Conclusion of extentions of gradient flow to metric space

Extension  Requirement Existence Uniqueness and
Contractivity

EVI-GF X geodesic space, Hard. C2G? is a suffi-  Guaranted
F A-geod. convex cient condition
EDE-GF X metric space Easy Not guaranteed
MMS-GF X metric space Relatively easy. “{x : Not guaranteed
F(x) < ¢} compact and
F Lipschitz” or “F X
geod. convex” suffices

e EVI-GF C EDE-GF
o MMS-GF C EDE-GF if “{x: F(x) < ¢} compact, F Lipschitz, F and
|V~ F| lower-semicont., [V~ F| is an upper grad. of F" or “F A-geod.

convex”
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Recap. of Optimal Transport Problems

@ Settings

Let X, Y be two measurable spaces, ;1 € P(X) and v € P(Y) are
fixed measures, Let ¢ : X x Y — R be a cost function.

Definition (push-forward of a measure)
For a measurable function T : X — Y and a measure p € P(X), define

the push-forward of ys under T, Txpu, to be a measure on Y s.t.

T4u(A) = u(T71(A)), VA € o-algebra of Y.

V.

For X = Y =R"” and T invertible, then in terms of p.d.f.,
Tup= (o T71)|det(VT1)|, i.e. rule of change of variables.
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Recap. of Optimal Transport Problems

e Monge's Problem:

(MP)Tinf /Xc(x, T(x))dp(x).

pl=v

o (Optimal) T is called a (optimal) transport map.
e The problem may not be feasible.

@ Kantorovich's Problem:

(KP) inf / c(x,y)dy(x,y),
yeN(p,v) Jxxy

where M(p,v) £ {7|(mx)4y = p, (7y) gy = v}.
o (Optimal) ~ is called a (optimal) transport plan.
e The problem is always feasible.
@ MP is a special case of KP, where ~ is restricted to the form
v =(id x T)gp. If T* exists, v* = (id x T*)xp is also optimal.
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Recap. of Optimal Transport Problems

@ Dual Kantorovich Problem:
e Direct form:

(DKP) sup /¢du+/ Ydw.
¢>€L (X),pell(Y),
)+ (y)<elx,y)

o Reformulation:
Definition

o c-transform (c-conjugate) of x : X = R, x¢: Y — R, is defined as
X“(y) & infrex c(x,y) — x(x)-
o W (X)2 {xIx: X =R} ¢:Y = Ris c-concave if 1) € W (X).

(DKP') sup /qﬁdu—k/y(bcdy.

PEV(X) J X
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Recap. of Optimal Transport Problems

@ Dual Kantorovich Problem:
o Reformulation:

(DKP') sup /¢du+/ ¢cdv.

PEV(X)

Definition (Kantorovich potential)
The optimal ¢ of (DKPOQ') is called Kantorovich potential, denoted by ¢. J

When c is uniformly continuous (e.g. when c is continuous and X is
compact), then the existence of Kantorovich potential ¢ can be proven
(by AA theorem).

Remark
Strong duality holds: KP(u,v) = DKP(u,v). J
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Recap. of Optimal Transport Problems

@ Dual Kantorovich Problem:
e Special case 1: X =Y, ¢(x,y) = d(x,y) is a distance:

(DKP1) sup /d)d,u—/cf)du.
¢eLip, /X X

e Special case 2: X = Y =Q CR" and ¢(x,y) = 3[x — y|*:

Theorem
e For quadratic cost and Q C R" close, bounded and connected, 3! optimal
transport plan v* for (KP).

o Additionally, if i1 is absolutely continuous, optimal transport map T* exists and
~* = (id, T*)xu. Moreover, there exists a Kantorovich potential p s.t. Vi is

unique p-a.e, and T = Vu a.e., where u(x) £ % — ¢(x) is convex.
v
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Recap. of Optimal Transport Problems

@ Dual Kantorovich Problem:
o Special case 2: X =Y =Q C R" and c(x,y) = 3|x — y|*:

Theorem

e For quadratic cost and Q2 C R" close, bounded and connected, 3! optimal
transport plan v* for (KP).

e Additionally, if i is absolutely continuous, optimal transport map T* exists and
~v* = (id, T*)xu. Moreover, there exists a Kantorovich potential ¢ s.t. Vi is

unique p-a.e, and T = Vu a.e. where u(x) £ % — ¢(x) is convex.

Corollary

o Under the same condition, any gradient of a convex function is an optimal map
between p and its image measure.

o Optimal transport map uniquely exists for c(x,y) = h(x — y) with h strictly
convex. (e.g. |x —yl|P,p>1).
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The Wasserstein Space

Definition
On metric space (X,d), for p>1 and a fixed point xp € X, define

£ [ d(x, x0)Pdu(x), and Pp(X) = {p € P(X) : mp(p) < +o00},

whlch is independent of the choice of xp.

Theorem

Wo (i, v) = (infenqu) [x d(x, y)Pdy(x, y)) YP is a distance on Pp(X)

Definition (Wasserstein space)

Wp(X) £ (Pp(X), W).
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The Wasserstein Space

Definition (Wasserstein space)

Wp(X) £ (Pp(X), W).

Theorem

In W, (X) with p> 1, given pi, pin € Pp(X), n € N, the followings are
equivalent:

® Lp— pow.rt. Wy,
@ fip — p and mp(pn) — mp(p);

° fX ¢dpn — fx ¢dp, Vo €
{¢ € CO(X): A, Be R s.t. [¢(x)] < A+ Bd(x,x)P,Vx,x0 € X}.
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The Wasserstein Space

Special cases:
e Case 1: (X, d) is compact.
o P(X) =Py(X),¥p>1.
o p— pw.rt. W, <= u, — p.
@ Case 22 X=Q CRand pe[l,+). c(x,y) = |Ix = yllp.

[
/

T X T

o [P distance between p.d.f.s of two measures: “vertical” distance. W,
distance between two measures: “horizontal” distance.
o p1 < pp= W, < W,,. If Qisbounded, W, < W,, = p1 < p>.
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The Wasserstein Space

Geodesic on W, (Q):

Theorem (McCann's displacement interpolation)
o IfQ € RY is convex, then W,(Q) is a length space, and for
p,v € Wy(Q) and v as optimal transport plan from . to v, then
p(t) = (me) gy, where me(x,y) £ (1 — t)x + ty,

is a constant-speed geodesic.
e If p > 1, then all the constant-speed geodesics are of this form.

e If additionally . is absolutely continuous, then there is only one
geodesic, whose form is

pue = (Te) gy, where Te £ (1 — t)id + tT,

where T is the optimal transport map from u to v.
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The Wasserstein Space

Geodesic convexity in W, () (displacement convexity):

o Definition is given by the general gradient flow theory.
@ Important examples:

Definition (Important functionals on W»(2))
For f:R—>Rconvex, V:Q >R, W:RY >R symmetric
(W(x) = W(—x)), define

Flo) = / F(p(x))dx, V(p) = / Ve W = / / W (x—y)dp(x)dp(y).

Theorem

e A-convexity on Q of V (or W) = \-geodesic convexity on W(Q2) of V (or
W).

o f(0) =0 and s?f(s~9) is convex and decreasing, 2 is convex, 1 < p < oo
= F is geodesically convex in W,().
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Gradient Flows on Wasserstein Spaces

Gradient Flows on W,(Q2),Q2 C R”
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Curves/flows on W,(£2),Q C R”

Continuity equation:

What is special for W,(2), is that it is of probability distributions. The
curve/flow/dynamics in W,(€2), j1¢, represents the evolution of
distributions. This evolution can be associated with (viewed as a result of)
an evolution/dynamics in R”, represented by vector field v;. The typical
relation between them is the continuity equation:

Otpre + V - (vepie) = 0.
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Curves/flows on W,(£2),Q C R”

Theorem
Let p > 1, Q C R? open, bounded and connected.

o Let {it}iefo) be an AC curve in Wy(2). Then for a.e. t € [0,1]
there exists a vector field v; € LP(us; RY) s.t. 1)
Otpie + V - (vepue) = 0 is satisfied in the sense of distributions; 2) for
a.e t €[0,1], [Ivelle(ue) < 111(2).

o Conversely, if {j1t}ecfo,1] C Pp(Q2) and Vt we have a vector field
vi € LP(pe; RY) with fol Vel L (pur)dt < +oc solving
Otpie + V- (vepie) = 0, then {pue}icio) is AC in W(Q2) and for a.e.
t € [0, 1], ['[(t) < [[velleogur)-

@ Thus in both cases, the conclusion can be strengthened with
111(E) = 1Ivell Lo (pue) -

(I guess v/ : Q — R, 1 < j < d satisfies |/vt"|p is p1¢-integrable, and
1/p

Ivelleoguey = (Xfy Jo W) [PAge(x)) ")
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Gradient Flows on W,(£2), Q2 C R”

@ We only consider absolutely continuous measures, denoted by p, so
that distribution density can be accessed.

o Let F: W(Q) — R be a functional on W, (Q). Use MMS-GF to
define the gradient flow w.r.t. F:

W2(p, p})
2T

@ General existence conditions apply, e.g. {p: F(p) < ¢} compact and
F Lipschitz, or F A-geodesically convex.
@ Special result:

Pley1 € argmin F(p) +

Theorem

Let F : W,(Q2) — R be \-geodesically convex, then MMS-GF w.r.t. F
exists. Let p?, pl be two solutions, and define E(t) = SW2(p?, pt). Then
E(t) < e_)‘tE(O), which implies uniqueness for a given initial condition,
and stability and exponential convergence for A > Q.
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Gradient Flows on W,(£2), Q2 C R”

@ To relate F and the vector field v¢, we need the notion of first
variation.

Definition (First Variation)

First variation of a functional G : P(Q) — R) is defined as 4 ( ):Q—=R

st. LG(p+ex)|e=0 = | %(p)(x)dx(x),VX € {x: Jeo s.t. Ve €
[0, 0], p + ex € P(Q)}-

(Recall that on R?, VF € R? s t. —F(x+sv)\5 o= (VF,v),Vv e RY)
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Gradient Flows on W,(£2), Q2 C R”

@ To relate F and the vector field v;, we need the notion of first
variation.

Definition (Important functionals on W»(2))

For f:R—Rconvex, V:Q >R, W:RY 5 R symmetric
(W(x) = W(—x)), define

F(o) = [ Fob)ax V(o) = [ Vedew = [ Wixy)ant)anty).

v

Theorem

%]pr = f'(p), ¥ 5=V, 5(;2} W x p (convolution)
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Gradient Flows on W,(£2), Q2 C R”

@ To relate F and the vector field v¢, we need the notion of first
variation.

Theorem

The first variation of Wasserstein distance with cost function c:
6WC(p7

5p v) — = ¢, if p,v are defined on Q C RY, ¢ : Q x Q — R continuous,
and Kantorovich potential @ is unique and c-concave
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Gradient Flows on W,(£2), Q2 C R”

@ Relate F and the vector field v;.
Theorem
2 T
For the Minimizing Movement Scheme pj_,, € argmin, F(p) + Wolprk)

27 Y
the optimality condition is:

oF , . %
- — = t.
(ki) + £ = cons

where ¢ is the Kantorovich potential from pj_ , to py.

o Relation between T* and ¢: T*(x) =x — Ve,
relation between v; and T: v(x) = (x — T(x))/T,
so in the limit 7 — 0, the gradient f(|50W w.r.t. F induces a flow in R":
F
vilx) = =V (5 (p) (),
and the flow p; in Wo(Q) is:

s o () -5
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Numerical methods from the JKO scheme

@ JKO: Jordan-Kinderleherer-Otto.

e Solve the problem of the form min{F(p) + 3 WZ(p,v) : p € P(Q)} (7
is included in F.)

@ Two recent methods:
1) based on the Benamou-Brenier formula, for convex F(p);
2) based on methods from semi-discrete optimal transport, for
geodesically convex F. (involving techniques in computing geometry;
not covered in this slide)
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Benamou-Brenier formula

Theorem (McCann's displacement interpolation)
o IfQ e R? is convex, for i,v € W,(Q) and v as optimal transport
plan from p to v, then
W() 2 (o), where m(x, y) 2 (1— t)x + 1y,

is a constant-speed geodesic.
e If p > 1, then all the constant-speed geodesics are of this form.

e If additionally u is absolutely continuous, then there is only one
geodesic, whose form is

pe = (Tt)gp, where Ty = (1 — t)id + ¢T,

where T is the optimal transport map from p to v.
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Benamou-Brenier formula

From this theorem, we can see:

@ For the cost c(x,y) = |x — y|P, find an optimal transport <= find
constant-speed geodesic in W, since they are closely related and
(when p > 1 and p absolutely continuous) they are one-to-one.

@ Find constant-speed geodesic: min,,, fol |/ |(t)Pdt.

1 :

o In W, we have [1/[(t) = [[Vello(u) = (Jq [velPdpe) /P where v is
the velocity field solving the continuity equation.

So, we get the Benamou-Brenier formula (Time-dependent Kantorovich
Problem):
(TKPl) min / / ’Vt’pdptdt
(pe;ve):po=p,p1= >t
Orpt+V-(vept)=
o It is a kinetic energy minimization problem.
@ It selects constant-speed geodesics connecting p to v.

@ It is non-convex for (p¢, v¢).
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Benamou-Brenier formula

(TKP1) min / /|vt]pdptdt
(pt,ve):po= um—
Orpt+V-(vepr)=

Transform it to convex: let E; = v¢p¢, and use (p¢, E¢) as arguments:

: |Ee|P
(TKP2) min rdxdt.
(pe,Ee)po=impi=v, Jo Ja pf~"
Otpt+V-Er=0
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Benamou-Brenier formula

: |Ee|P
(TKP2) min 7dxdt.
(pt,E):po=p.p1=v, Jo Ja pf
Btpt—l—Vft:O
Further transformation:
o Kg={(a,b) eRxR?:a+ %\b|‘7 < 0} for g = p/(p — 1) conjugate
of p. It is convex in R x R¥.

@ For t € R and x € RY, define

%t‘ﬁpl, if t >0
fo(t,x) = sup (at+b-x)=1¢ 0 ift=0,x=0
(a:b)€Kq +o00, ift=0,x#0,0rt<0.

So the optimization problem can be reformulated as

(TKP3) min sup //ad,o—i—//b dE,

(pt,Et):po=p.p1=v,  (a,b)e
pe+V-E:=0  c(Qx[0,1];Kq)

where [[ indicates integral w.r.t. both space and time
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Benamou-Brenier formula

(TKP3) ~ min sup //adp+/ b-dE,
(pt,Et):po=p.p1=v,  (a,b)e
0tpt+V-E:=0 C(2x[0,1];Kq)

Utilizing

sup —//Gtgbdp—//VqS-dE—l—/gbldy—/gbod,u
$eCL([0,1]%Q)

— 0, ifPOZ,UaPl:VaatPt‘i‘v'Et:Oa
~ | +oo, otherwise.

)

we get

(TKP4) min sup //(a — 0rp)dp + / (b—V¢)-dE

(pt,Et) (a,b)e C(2%[0,1]:Kq),
$eCH([0,1]xQ)

+ [ oraw— [ dod
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Benamou-Brenier formula

(TKP4) min sup //(a — 0r¢)dp + //(b — Vo) -dE
(pt;Et) (a,b)e C(Q%[0,1]:Ky),

$€CL([0,1]xQ)

+ [ ot~ [ oo

To simplify notation, Iet m=(p,E), A=(a,b), m-A= [adp+ [b-dE,
Vixp = (0:9, V), = [ ¢1dv — [ ¢odp, Ik, (-) be indicator

function, then

(TKPY4) mni'n sAqub) L(m, (A, 8)) 2 m-(A—Vixd) — Ik, (A) + G(¢).

This is a mini-max problem.
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Benamou-Brenier formula

(TKPY4) min s;‘ug L(m, (A, ¢)) £ m- (A= Vo) — Ik, (A) + G(9).

L(m, (A, ¢)) is the Lagrangian of the form L(X,Y) = X -AY — H(Y),
where A is a linear operator. Its optimality condition

AY =0
NX—-VH(Y)=0
is the same as the one of the augmented Lagrangian
L(X,Y)=X-AY — H(Y) = §|AY|%

AY =0
NX —=VH(Y)—=rAN*AY =0’
for any r > 0, and A* is its adjoint w.r.t. the inner product. So finally,

(TKPS) minsupm - (A~ Vi.x6) = e (A) + 6(6) - ZIA= Vel
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Benamou-Brenier formula

(TKPS)minsup m - (A = V1x6) — li,(4) + 6(0) = 7|4 = Ve
To solve this,

e Optimize ¢: minimize a quadratic functional in calculus of variations,
e.g. solving a Poisson equation

@ Optimize A: a pointwise minimization problem, specifically a
projection on the convex set Ky

e Optimize m: gradient descent. m <— m — r(A — V¢ x9)
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My Remarks
My Remarks

Given a functional F(p) on W5(Q) with Q@ C R”, if we want to minimize
it, we can find a gradient flow on W»(Q2) defined by F, which gradually
minimizes F, by:

@ the MMS discretization with step size 7: we get {p] }«, where

W2 (p. Pk)
2r
In this case we directly get a sequence of distributions DIRECTLY,
e.g. in terms of pdf.

@ simulating a dynamics/flow on Q, which is associated with the
gradient flow on W5(£2) (or which is the cause/reason of the
evolution of the distribution described by the gradient flow on
W2(£2)). The dynamics/flow on Q is governed by

3600 = 10, w00 = =7 (5 0)) (0

In this case the distribution is embodied as samples from it. We will
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My Remarks

My Remarks on SVGD

@ Afterwards, we will only consider the second approach to get the
gradient flow.

e Take F(p) = KL(p||p), for a fixed distribution p.

e Compare the results of gradient flow and variation calculus. (Omit -;
temporarily)

By Gradient Flow
F(p) = Jq plog 2dx, % = logp —logp + 1, so:

v(x) = Vlog p(x) — V log p(x).
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My Remarks on SVGD

By Variation Calculus
e Find the “directional derivative” G(v, p) of F(p) w.r.t. the dynamics
%ft(x) = v¢(x):
6(v,0) = - F(ppgon)lecor €9(x) = x +2v(x).

Pl (%) = p(E@ ™ (x))Tact® | & plx — ev(x))|Tac(x — ev(x))|-
For F(p) = KL(p||p), by my written notes on SVGD or the electronic
notes on R-SVGD, G(v,p) = [, p[Viegp-v+V - v]dx.

e Find v(x) s.t. it maximizes G(v p): maxv G(v p), s.t. |[v]|=1.If
we take the norm as ||v| = 3377 ; [, v? x)dx and introduce
Lagrange multiplier )\,

G( )dx —
m)!n max G(v, p) Z/ (x)p(x)dx

For F(p) = KL(p||p), take the first variation w.r.t. v;, i.e. let
oL n —0-

v — 2j=19j (a(a v,)) = 0:

A A~ Aa . Nnvee — N oo nr A lam A la~ -
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My Remarks on SVGD

By Variation Calculus

e Find v(x) s.t. it maximizes G(v, p): max, G(v,p), s.t. ||v| = 1.
we take the norm as |[v|| = 3 Y7, [ vZ(x)p(x)dx and introduce
Lagrange multiplier A,

G( )dx —
m)ln max G(v, p) Z/ (x)p(x)dx
For F(p) = KL(p||p), take the first variation w.r.t. v;, i.e. let

~ X0 (gl ) = 0
pdilog p — dip + Apvi = 0, v; x J;log p — O; log p,

as the same as the result by gradient flow.

If

However, in SVGD neither is adopted. It uses v in the space of
vector-valued RKHS and turn the objective as an inner product in it.
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My Remarks on General Results

The general equivalence of Gradient Flow and Variation Calculus?

6(v. ) =L F (plox — v (el — v ()] ) |

de
:a“—%/g ((55,; (p(x —ev(x))|[Jac(x — EV(X))|)

. [_ v - Vp(x —ev)|Jac(x —ev)|

+ p(x — ev)Tr(Jac(x + Ev)Jac(v))} dx
OF
:/ —(p(x))[ = v+ Vp(x) + p(x)V - v]dx.
Q 0p
But this result cannot even recover the case of F(p) = KL(p||p)! Nor can
it deduce the result of Gradient Flow v = —V(‘;—Z) by

miny max, G(v, p) + Al|v|| — A using variation calculus. Why? | would
prefer that there is something wrong in the above deduction of G(v, p).
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Compactness

@ A topological space X is compact if each of its open covers has a
finite subcover.
o If X is additionally a metric space, then “X is compact” is equivalent
to:
e X is sequentially compact: every sequence in X has a convergent
subsequence (the limit is in X, of course).
o X is complete and totally bounded (Ve > 0, X is a subset of the union
of FINITE open balls of radius ¢).

e X is limit point compact: every infinite subset of X has at least one
limit point in X.
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Weak convergence of measures

Let X be a measurable space.
pn — p: for any bounded function f : X = R, [fu, — [ fpu.
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Lower semicontinuity

@ On a topological space X, f: X - RU {—00, 00} is lower
semicontinuous at xp € X if Ve > 0, JU a neighbourhood of xp s.t.
Vx € U, f(x) > f(x0) — € when f(xp) < +00, and
limy_yx, F(x) = +00 when f(xp) = +o0.

@ In metric space, this is equivalent to liminf,_,, f(x) < f(xo).
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Original notion of absolute continuity

| = [a, b] is a compact interval of R (when [/ is not compact AC can also
be defined, in a more general way). A function f : | — R is absolutely
continuous on [ if there exists a Lebesgue integrable function g on [ s.t.

f(x)="f(a)+ [, g(t)dt,Vx € I.
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Holder space

e Halder condition: on RY, |f(x) — f(y)| < Cl|x — y||, with exponent
a.

o Holder space CK*(Q): functions on Q with continuous derivatives up
to order k and kth partial derivatives are Holder continuous with
exponent 0 < o < 1.

@ The larger o > 0 the stronger condition. So weaker than Lipschitz
(a=1).

e Compact inclusion C%#(Q) — CO¥(Q), for 0 < a < B < 1.
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Equicontinuity

Let X and Y be two metric spaces, and F a family of functions from X to
Y. The family F is equicontinuous at a point xg € X if Ve >0, 3§ > 0
s.t. d(f(x0), f(x)) <e,VFf € F,Vx : d(xp,x) < 0.

Concept ¢ depends on
Continuity €, Xo,
Uniform continuity e, f
Pointwise equicontinuity €, X0
Uniform equicontinuity €
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Ascoli-Arzela's theorem (AA theorem)

X: a compact Hausdorff space. C(X): the space of continuous functions
on X.

@ Typical statement: for a sequence of real-valued continuous functions
{fa}n on a closed and bounded interval [a, b], 1) 3 uniformly
converging subsequence {f,, }x = {fy}n is uniformly bounded and
equicontinuous; 2) every subsequence {f,, }x has a uniformly
convergent subsequence = {f,}, is uniformly bounded and
equicontinuous.

@ General statement: a subset of C(X) is compact < it is closed,
pointwise bounded and (uniformly) equicontinuous.

@ Very general statement: a subset F of C(X) is relatively compact in
the topology induced by the uniform norm < it is equicontinuous and
pointwise bounded.

e Corollary: a sequence in C(X) is uniformly convergent < it is
(uniformly) equicontinuous and converges pointwise to a function

(not necessarily continuous a-priori).
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