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Appendix A: Details for Solving Dynamics B and O in the Embedded Space

In this section, we present details used in Sec. 3.3 of the main paper to solve dynamics B and O in the
embedded space for releasing local coordinate systems and a cheap simulation rule. We only show
the details for SGGMC, and the procedure is quite similar for gSGNHT. The technique is adapted
from [2], and we reformulate it here for completeness and easier comprehension.

A.1: Main Details

Dynamics B and O of SGGMC in the coordinate space (see Sec. 3.3.1 of the main paper) are:

B :

{
dq =0

dp =−M>CMG−1p dt
, O :


dq =0

dp =−∇qU(q) dt− 1

2
∇q log |G(q)|dt+N (0, 2M>CMdt)

.

We do the transformation into the embedded space based on the map x = ξ(q). Note that for both
dynamics, q is constant so ẋ = (∇qξ)>q̇ = 0. From dynamics A in Sec. 3.3.1 (or the definition of
momentum in Appendix C), we have p = G(q)q̇ and by some calculus we have∇q = M>∇x. From
Sec. 3.1 we have πH(x) = π(q)/

√
|G(q)| and UH(x) , − log πH(x) = U(q) + 1

2 log |G(q)|. So
we have

B :

{
dx = 0

G(q)dq̇ = −M>CMq̇ dt
, O :

{
dx = 0

G(q)dq̇ = −M>∇xUH(x)dt+M>N (0, 2Cdt)
.

We then left multiply M(q)G(q)−1 for both momentum equations and have

B :

{
dx = 0

d(Mq̇) = −MG(q)−1M>CMq̇ dt
, O :


dx = 0

d(Mq̇) = −MG(q)−1M>∇xUH(x)dt

+MG(q)−1M>N (0, 2Cdt)

.

By definition v , ẋ = Mq̇; from the isometric property of the Riemann metric G(q), we have
G = M>M . So finally we have

B :

{
dx =0

dv =−M(M>M)−1M>Cv dt
, O :

{
dx =0

dv =M(M>M)−1M>
(
−∇xUH(x)dt+N (0, 2Cdt)

) .
We can write M(x) = M(ξ−1(x)) so M can be expressed in the embedded space. Now we complete
the transformation into the embedded space.
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Note that the matrix M(M>M)−1M>, which we denote as Λ(x), is the orthogonal projection onto
the column space of M (see Appendix A.2), which is Tx(Ξ(M)), the tangent space of the embedded
manifold at x (a conclusion from differential geometry). [2] proposes an alternative expression for
Λ(x) that can be more intuitively constructed and is computationally cheaper. Appendix A.2 shows
the interpretation of the two expressions and Appendix A.3 derives Λ(x) for hyperspheres based on
both expressions. By noting that x is constant for both dynamics, we can analytically solve them

B :

{
x(t) =x(0)

v(t) =expm
{
−Λ
(
x(0)

)
Ct
}
v(0)

, O :

{
x(t)=x(0)

v(t)=v(0)+Λ
(
x(0)

)[
−∇xUH

(
x(0)

)
t+N (0, 2Ct)

]
as given in the main paper.

A.2: Interpretation of the Two Expressions of the Orthogonal Projection Λ(x)

We first interpret that Λ(x) ,M(M>M)−1M> is an orthogonal projection onto the column space
C(M) of M . In our case, Mn×m has full column rank (differential geometry conclusion) so C(M)
is an m-dim subspace (hyperplane) of Rn. An orthogonal projection of x ∈ Rn onto C(M) gives the
following decomposition

x = y + z,

where y ∈ C(M), z ∈ (C(M))⊥ so y>z = 0. Express y as y = Mθx, where θ ∈ Rm acts as
the coordinate of elements in C(M). Then y>z = 0 gives (Mθx)>(x − Mθx) = 0, which is
θ>x (M>x−M>Mθx) = 0, and we solve

θx = (M>M)−1M>x.

So y = M(M>M)−1M>x, revealing the meaning of Λ(x) as the orthogonal projection onto C(M).

Now we introduce another expression for Λ(x) proposed in [2]. Let Nn×(n−m) be a set of or-
thonormal basis (collected in columns) of (C(M))⊥ so that N>N = In−m. Express z as
z = Nφx, where φ ∈ Rn−m acts as the coordinate of elements in (C(M))⊥. Then y>z = 0
gives (Nφx)>(x−Nφx) = 0, and we solve

φx = (N>N)−1N>x = N>x.

So y = x−NN>x, revealing the meaning of In −NN> as the same projection. This expression is
proposed because N is usually more sensible, especially for hyperspheres as shown in Appendix A.3.
It also saves computation since only one thin matrix multiplication is required, instead of more than
three matrix multiplications and possibly a matrix inversion for the former expression.

A.3: A Derivation of the Projection Λ(x) for the Hypersphere Example

First we need to describe a hypersphere in depth. A (d − 1)-dim hypersphere Sd−1 , {x ∈
Rd|‖x‖ = 1} is defined as a subset of Rn, so we can isometrically embed it into Rd by an identity
mapping Ξ : Sd−1 → Rd, x 7→ x. To get M(q), we need to specify a local coordinate system
for Sd−1. We select N = {x ∈ Sd−1|xd > 0} i.e. the upper semi-hypersphere, and Ω = {q =

(q1, . . . , qd−1)>|
∑d−1
i=1 q

2
i < 1} ⊂ Rd−1. For x ∈ N , define Φ(x) = (x1, . . . , xd−1)> ∈ Ω.

Then (N ,Φ) is a local coordinate system for Sd−1 and ξ(q) = (q1, . . . , qd−1, ξd)
> ∈ Rd, where

ξd =
√

1−
∑d−1
i=1 q

2
i . By definition, we have

M(q) =

(
Id−1
−q>/ξd

)
, G(q) = M>M = Id−1 +

qq>

ξ2d
.

By the Sherman-Morrison formula, we have

G(q)−1 = Id−1 − qq>.
So according to the first expression of Λ(x), we have

Λ(ξ(q)) = MG−1M> =

(
Id−1 − qq> −ξdq
−ξdq> 1− ξ2d

)
= Id − ξ(q)ξ(q)>,
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or Λ(x) = Id − xx>, x ∈ Ξ(N ). We successively select similar local coordinate systems (i.e.
select Ω as lower semi-hypersphere, east semi-hypersphere, etc.) until Sd−1 can be covered by these
coordinates. For each of these local coordinate systems, we have the same conclusion. To sum up,
we have Λ(x) = Id − xx>, x ∈ Ξ(M).

Another way to implement the projection is though the orthonormal basis N(x)n×(n−m) of the
orthogonal complement of the tangent space. For the hypersphere Sd−1, the tangent space TxSd−1
is intuitively a (d− 1)-dim subplane in Rd perpendicular to the direction of radius, which is just x.
The orthogonal complement of the plane is the line in the direction of x. Thus N(x) = x and by the
second expression Λ(x) = Id − xx>, the same as derived by the first expression. We see that this
derivation is more neat.

Appendix B: Estimation of the Potential Energy U(β|v) for SAM

For the SAM inference task, the potential energy U(β|v) , − log π(β|v) is required for GMC to
directly sample from π(β|v). It is involved since we do not know the closed form of U(β|v), even
ignoring a shifting constant. By referring to the unbiased Monte Carlo estimation of its gradient
−∇β log π(β|v) = −Eπ(θ|v,β) [∇β log π(β, θ|v)] as provided in Sec. 4 of the main paper, one
possible estimation can be formed by samples {θ(n)}Nn=1 from π(θ|v, β):

U(β|v) ≈ − 1

N

N∑
n=1

log π(β, θ(n)|v) + const. (1)

Unfortunately, this estimation is biased. The relation between the estimation and the true value can
be found by

U(β|v) =− Eπ(θ|v,β) [log π(β|v)] (since log π(β|v) is independent of θ)

=− Eπ(θ|v,β) [log π(β, θ|v)− log π(θ|v, β)]

≈− 1

N

N∑
n=1

(
log π(β, θ(n)|v)− log π(θ(n)|v, β)

)
,

where an average of − log π(θ(n)|v, β) lies between them. Although log π(θ|v, β) is known up to a
shifting constant, it cannot meet the demand here since the θ-free shifting constant varies with β, and
we consider a function of β here.

Nevertheless Eqn. (1) seems to be the only way to estimate the potential energy. It can be used by an
approximation: when the proposal of β is not distant from its beginning value, π(θ|v, β) does not
change much. Adopting this, a sampling inference method for SAM by directly sample from π(β|v)
can be conceived, i.e. GMC-apprMH. The gradient is estimated in the same way as SGGMC except
it uses the whole dataset.

Due to the inaccuracy of this, GMC-bGibbs is considered. But GMC-apprMH is in the same
scheme of SGGMC/gSGNHT since they draw one sample of β based on multiple samples of θ,
while GMC-bGibbs only use one sample of θ for each β.

Appendix C: A Derivation of the Momentum and the Hamiltonian Originated
from Physics

In classical mechanics (see e.g. [5]), there is a formal derivation for the Hamiltonian, beginning
with the Lagrangian. In the coordinate space, the Lagrangian is defined by L(q, q̇) = 1

2 q̇
>G(q)q̇ −

UH
(
ξ(q)

)
, where q ∈ Ω and q̇ ∈ TqΩ = Rm. The Hamiltonian is defined as the Legendre

transformation of the Lagrangian L(q, q̇). To perform the transformation, define the (generalized
conjugate) momentum as p , ∂L

∂q̇ = G(q)q̇, and accordingly express q̇ = q̇(q, p) = G(q)−1p, then
the Hamiltonian is expressed as

H(z) ,
(
p>q̇ − L(q, q̇)

)∣∣∣
q̇=q̇(q,p)

=
1

2
p>G(q)−1p+ UH

(
ξ(q)

)
,

where z , (q, p) is called the canonical coordinates. This is the same as the one used by SGGMC.
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In an isometrically embedded space, the same procedure can be applied. The Lagrangian now is
L(x, ẋ) = 1

2 ẋ
>ẋ− UH(x), where x ∈ Ξ(M) and ẋ ∈ TxΞ(M) (the tangent space of Ξ(M) at x).

The momentum in the embedded space is thus v , ∂L
∂ẋ = ẋ. The Hamiltonian is derived by

H(x, v) ,
(
x>ẋ− L(x, ẋ)

)∣∣∣
ẋ=ẋ(x,v)

=
1

2
v>v + UH(x).

This is the common form of the Hamiltonian, where the “velocity” should be regarded as the
momentum in the isometrically embedded space for a general case.

Appendix D: A Rationale on the Shape of the Joint Posterior for the Synthetic
Experiment
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Figure 1: Left plot shows v1, v2, µ for
generating data. Modes of the synthetic
data are v(g)1 and µ(g). Right plot shows
the two approximate modes of the pos-
terior under a weak prior: (v

(1)
1 , v

(1)
2 ) in

blue and (v
(2)
1 , v

(2)
2 ) in green.

In this part we provide an interpretation for the symmet-
ric bimodal shape of the posterior π(v1, v2|D) for the
simple mixture of vMF model in Sec. 5.2 of the main
paper. We start with the way we generate the synthetic da-
ta. They are samples drawn by GMC from the likelihood
π(xi|v1, v2) ∝ vMF(xi|v1, κx) + vMF(xi|µ, κx), with
µ , (v1 + v2)/‖v1 + v2‖, and v1 = v

(g)
1 and v2 = v

(g)
2

as shown in Fig. 1 (left). Due to the mono-modal shape
of vMF, the synthetic data has two modes: v(g)1 and µ(g).
On the other hand, by referring to the generating process,
the modes of x are v1 and µ. Thus, we can approximately
(under a weak prior) estimate the modes of the posteri-
or by matching the theoretical data modes and the ob-
served data modes: 1) let v1 = v

(g)
1 , µ = µ(g), we have

v
(1)
1 = v

(g)
1 , v

(1)
2 = v

(g)
2 , i.e. the value used to generate

data; 2) let v1 = µ(g), µ = v
(g)
1 , we have v(2)1 = µ(g) and v(2)2 shown in Fig. 1 (right). Note

that the two approximate modes of the posterior are symmetric with respect to e1, so they share
equal preference from the prior. In our settings φ = π

6 , so we expect the posterior to have two
equal-weighted modes around (− π

24 ,
π
8 ) and ( π24 ,−

π
8 ). Our experiment results in the main paper

meets this reasoning.

Appendix E: Algorithms of SGGMC/gSGNHT and their application to SAM

Based on the statements in Sec. 3.3 of the main paper, we summarize the algorithms of our proposed
SGGMC and gSGNHT in Alg. 1 and Alg. 2, respectively. Here we only present algorithms for scalar
C.

For both SGGMC and gSGNHT, the step size schedule {εn} is recommended to be a fixed number.
Although a shrinking schedule, e.g. εn ∝ n−k for k ∈ (0, 1) mentioned in [3], enjoys more
theoretical guarantees (sample average is asymptotically unbiased even if the stochastic gradient may
not be unbiased [3]), but the advantage may not show up in practice and the performance may be
affected by insufficient exploration.

The first two parameters of our SGGMC/gSGNHT, the fixed step size ε and the scalar C, can be
managed in a similar way of SGHMC [4], which utilizes its analogy to stochastic gradient descent
(SGD) with momentum. By introducing two SGD terminologies, the per-batch learning rate γ and
the coefficient of momentum ρ (both scalar), our parameters can be set as ε =

√
γ/|D| and C = ρ/ε.

Typical values of γ and ρ are around 0.1 to 0.01. The last parameter is the number of steps L. For
SG-MCMCs it is often set to 1, in the sense that L does not affect the simulation trajectory, different
from HMC. Other integers can also be used, with less correlated samples. Automatic selection of L
for SG-MCMCs remains to be studied, while the counterpart for HMC is provided as the No-U-Turn
Sampler (NUTS) [6].

From the contents in Sec. 4 of the main paper, the algorithm to use SGGMC/gSGNHT for the
inference problem of SAM is presented in Alg. 3.
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Algorithm 1 Sampling procedure of SGGMC

Randomly initialize x(0) ∈ Ξ(M).
Sample v∗ ∼ N (0, I) and project v(0) ← Λ(x(0))v∗.
for n = 1, 2, . . . , do

Sample a subset S for computing∇xŨH(x). (x0, v0)← (x(n−1), v(n−1)).
for l = 1, 2, . . . , L do
A: Update (x∗, v∗)← (xl−1, vl−1) by the geodesic flow for time step εn

2 .
B: v∗ ← exp{−C εn

2 }v
∗.

O: v∗ ← v∗ + Λ(x∗) ·
[
−∇xŨH(x∗)εn+N

(
0, (2C−εnV (x∗))εn

)]
.

B: v∗ ← exp{−C εn
2 }v

∗.
A: Update (xl, vl)← (x∗, v∗) by the geodesic flow for time step εn

2 .
end for
(x(n+1), v(n+1))← (xL, vL). No M-H test.

end for

Algorithm 2 Sampling procedure of gSGNHT

Randomly initialize x(0) ∈ Ξ(M).
Sample v∗ ∼ N (0, I) and project v(0) ← Λ(x(0))v∗. ξ(0) ← C.
for n = 1, 2, . . . , do

Sample a subset S for computing∇xŨH(x). (x0, v0, ξ0)← (x(n−1), v(n−1), ξ(n−1)).
for l = 1, 2, . . . , L do
A: Update (x∗, v∗)← (xl−1, vl−1) by the geodesic flow for time step εn

2 ,
ξ∗ ← ξl−1 + ( 1

mv
>
l−1vl−1 − 1) εn2 .

B: v∗ ← exp{−ξ∗ εn2 }v
∗.

O: v∗ ← v∗ + Λ(x∗) ·
[
−∇xŨH(x∗)εn+N

(
0, (2C−εnV (x∗))εn

)]
.

B: v∗ ← exp{−ξ∗ εn2 }v
∗.

A: Update (xl, vl)← (x∗, v∗) by the geodesic flow for time step εn
2 ,

ξl ← ξ∗ + ( 1
mv
∗>v∗ − 1) εn2 .

end for
(x(n), v(n), ξ(n))← (xL, vL, ξL). No M-H test.

end for

Appendix F: Implementation Details for Experiments
F.1: Toy experiment in Sec. 5.1.

To draw 10,000 samples by each method, we set L = 30, ε = 1× 10−2 for both GMC and SGGMC,
and ρ = 0.1 for SGGMC. For the empirical distribution, the bin size is set to 0.1.

F.2: Synthetic experiment in Sec. 5.2.

The 100-sized synthetic data is generated by GMC without burn-in. To draw from the posterior, we
set L = 20 and ε = 1× 10−3 for GMC, and L = 10, ρ = 0.1 and γ = 5× 10−4 for SGGMC. For
each method, 25,000 posterior samples are taken after 15,000 burned in.

F.3: Spherical admixture model experiment in Sec. 5.3.

The two datasets and codes for all inference methods are available at http://ml.cs.tsinghua.
edu.cn/~changliu/sggmcmc-sam/.

Datasets Both datasets present the term frequency-inverse document frequency, or tf-idf feature
of documents. They are converted from the bag-of-words feature of their corresponding original
datasets, which provide tf(d, v) — term frequency (number of occurrence) of term v in document d.
The conversion is done by first computing tf-idf(d, v) = tf(d, v) · log

(
D/(1 + df(v))

)
, where D is

the number of documents in the dataset, and df(v) is the document frequency of term v (number of
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Algorithm 3 sampling inference for SAM using SGGMC/gSGNHT
for m = 1, 2, . . . do

Randomly sample a subset {d(s)}Ss=1 from whole training data.
for s = 1, 2, . . . , S do

Sample N times from π(θd(s)|β(m−1), vd(s)) using GMC to get {θ(n)d(s)}
N
n=1.

end for
Sample once from π(β|v) using SGGMC/gSGNHT to get β(m), with stochastic gradient com-
puted by Eqn. (10) in the main paper.

end for

documents containing term v), then `2−normalizing the vector with component v equal to tf-idf(d, v)
for a fixed d and getting the unit vector tf-idf(d) for document d.

The small dataset 20News-different is a subset of the 20Newsgroups dataset (http://www.qwone.
com/~jason/20Newsgroups/, we use the Matlab/Octave version). It contains 3 categories out of
the total 20: rec.sport.baseball, sci.space and alt.atheism. It is used by [8] to illustrate the benefits
of SAM over LDA [1] in feature reduction. The original vocabulary size is 61,188, and we shrink
it to 5,000 by selecting words with moderate document frequency (between 0.36% and 11.77%).
While training by any method on the dataset, hyper-parameters of SAM are fixed as σ = 1× 104,
κ0 = 1× 104, κ1 = 3× 104, α = 10, and m set to the normalized mean of training documents.

The large dataset is based on the 6.6M Wikipedia dataset used by [9] (http://ml.cs.tsinghua.
edu.cn/~aonan/datasets/wikipedia/). The original vocabulary size is 7,702, and we shrink
it to 3,000 by selecting words with moderate document frequency (between 0.44% and 5.99%).
Our dataset is then generated by randomly (excluding documents with ≤ 20 words) choosing 150K
training and 1K test documents from the 6.6M whole dataset. The training size is the same as used by
[7] for presenting scalability. While training by any method on the dataset, hyper-parameters of SAM
are fixed as σ = 6× 103, κ0 = 6× 103, κ1 = 2× 104, α = 10, and m set to the normalized mean
of training documents.

Issues on the sampling methods For all sampling methods, samples of topic proportion θd of
document d drawn from π(θd|vd, β) are required. This can be well done by GMC. We use the
initialization θd = (β>β)−1β>vd for sampling θd, which is the mode of π(θd|vd, β) under an
uninformative prior α = 1. For GMC-apprMH/GMC-bGibbs, to draw one sample of β, sampling
θd are carried out for all the documents in the training data, while SGGMC/gSGNHT only need to
traverse the chosen mini-batch. Noting that drawing θd for different d is independent of each other,
we parallelize the sampling procedure for different d, by OpenMP (http://openmp.org/). Since
all sampling methods involve this and once for one β sample, it is still fair to compare the methods
by the evolution along wall time, as long as the number of threads is the same.

Techniques to avoid overflow We need further special techniques to avoid the numerical overflow
problem, which is caused by the modified Bessel function of the first kind Ir(·) in order r that is
used in the normalization constant of vMF distribution (See Sec. 4 of the main paper). Ir(·) tends
to be either zero or infinity on sides of some argument threshold when the order r is large. In our
experiments r = V/2 − 1 is of order of thousands, and the behavior is obvious. To avoid trivial
models, we have to choose hyper-parameters of SAM σ, κ0 and κ1 (acting as arguments of Ir(·))
relatively large so that Ir is non-zero. But it then almost always overflows. Thanks to the fact that
only its logarithm is required, we can try to directly calculate the logarithm. By noting that

log Ir(x) = log

( ∞∑
n=0

1

n!Γ(n+ r + 1)

(x
2

)2n+r )
is the logarithm of a summation, we can use the log-sum trick: to calculate log(A+ B) with only
a = logA and b = logB (assume a ≥ b) available, we can reformulate the target as

log(A+B) = log(exp(a) + exp(b)) = log
(

exp(a)
(
1 + exp(b− a)

))
= a+ log

(
1 + exp(b− a)

)
,

where b− a ≤ 0 thus 1 + exp(b− a) ≤ 2, so no numerical instability is met.

For specific implementation and parameters of our methods for the presented results, please refer to
our codes.
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