STOCHASTIC GRADIENT GEODESIC MCMC METHODS

CHANG LIU, JUN ZHU, YANG SONG {chang-li14@mails., dcszj@}tsinghua.edu.cn; songyang@stanford.edu

INTRODUCTION

Task

Scalable Bayesian inference for latent variables on *Riemann manifolds* by Monte Carlo.

Drawbacks of Existing Methods

- Unscalable: drawing one sample needs traversing the whole dataset.
- Inner iteration: iteration within one dynamics simulation step.
- Global coordinates requirement: limited applicability (fail for e.g. hypersphere).
- Lower order integrator.

Our Solution

Stochastic Gradient Geodesic Monte Carlo; geodesic SG Nosé-Hoover Thermostats.

PRELIMINARIES

SG-MCMC

To sample from posterior $\pi(q|\mathcal{D})$, estimate the required gradient $\nabla U(q) \triangleq -\nabla \log \pi(q|\mathcal{D})$

 $= -\nabla \log \pi_0(q) - \sum_{d=1}^D \nabla \log \pi(x_d|q)$

by *stochastic gradient* with random subset S: $\nabla \tilde{U}(q) \triangleq -\nabla \log \pi_0(q) - (D/|\mathcal{S}|) \sum_{x \in \mathcal{S}} \nabla \log \pi(x|q).$ • A complete recipe (Ma et al., 2015) for the dynamics of SG-MCMC:

$$dz = f(z)dt + \mathcal{N}(0, 2D(z)dt),$$

with f, D satisfying certain conditions. Ability to handle SG noise $f(z)=f(z)+\mathcal{N}(0,B(z))$: $dz = \tilde{f}(z)dt + \mathcal{N}(0, 2D(z)dt - B(z)dt^2).$

Riemann Manifold \mathcal{M}

 (\mathcal{N}, Φ) : local coordinate system. Ξ : (isometric) embedding. $\xi \triangleq \Xi \circ \Phi^{-1}$. G(q): Riemann metric tensor. Distribution on \mathcal{M} : $\pi_{\mathcal{H}}(x)|_{x=\xi(q)}=\pi(q)/\sqrt{|G(q)|}$, $\pi(q)$: in the coordinate space; $\pi_{\mathcal{H}}(x)$: in the embedded space.

Table: fold r.v.

met

RMH SGF SGN

SGRH SG(

: A summary of related methods (-: not for mani- :; †: not SSI; ‡: 2nd-order versions appear afterwards)				
hods	stochastic gradient	no inner iteration	no global coordinates	order of integrator
GMC	×			2nd
MLD	×		×	1st
HMC	×	×	×	2nd [†]
HMC	×	×	\checkmark	2nd [†]
GLD				1st
HMC			_	1st [‡]
NHT			_	1st [‡]
RLD			×	1st
HMC			X	1st
GMC		\checkmark	\checkmark	2nd
NHT				2nd

DYNAMICS CONSTRUCTION

Design novel dynamics in coordinate space by the complete recipe, so that:

- the stationary distribution is desired;
- suitable for 2nd-order integrators.

SGGMC

Augment with momentum $p \in \mathbb{R}^m$: z = (q, p). $\int \mathrm{d}q = G^{-1} p \mathrm{d}t$

$$\begin{cases} dp = -\nabla U dt - (1/2)\nabla \log |G| dt - M^{\dagger} CMG^{-1}p dt \\ -(1/2)\nabla [p^{\top}G^{-1}p] dt + \mathcal{N}(0, 2M^{\top}CMdt) \\ M(q)_{ij} \triangleq \partial \xi_i(q)/\partial q_j; \text{ choose } C_{n \times n} \text{ pos. def.} \\ gSGNHT\end{cases}$$

 $z = (q, p, \xi)$. Thermostats $\xi \in \mathbb{R}$: adaptive *C*.

2ND-ORDER INTEGRATORS

Simulate in the Embedded Space

• to release global coordinates requirement;

• $(q, p) \rightarrow (x, v)$. (v also momentum)

Symmetric Splitting Integrator

• Guaranteed to be 2nd-order (Chen et al., 2015).

Split the dynamics into parts and solve each in closed form:

$$A: \mathrm{d}q = G^{-1}p\mathrm{d}t, \mathrm{d}p = -(1/2)\nabla \left[p^{\mathsf{T}}G^{-1}p\right]\mathrm{d}t$$

$$B: \mathrm{d}p = -M^{\top}CMG^{-1}p\mathrm{d}t$$

$$O: \mathrm{d}p = -\nabla U(q) \mathrm{d}t - (1/2) \nabla \log |G| \mathrm{d}t + \mathcal{N}(0, 2M^{\mathsf{T}}CM \mathrm{d}t).$$

• Simulate the whole dynamics: "ABOBA".

A,B: $\varepsilon/2$; O: ε ; use the closed-form solutions.

