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Abstract

We propose two stochastic gradient MCMC methods for sampling from Bayesian
posterior distributions defined on Riemann manifolds with a known geodesic flow,
e.g. hyperspheres. Our methods are the first scalable sampling methods on these
manifolds, with the aid of stochastic gradients. Novel dynamics are conceived
and 2nd-order integrators are developed. By adopting embedding techniques and
the geodesic integrator, the methods do not require a global coordinate system of
the manifold and do not involve inner iterations. Synthetic experiments show the
validity of the method, and its application to the challenging inference for spherical
topic models indicate practical usability and efficiency.

1 Introduction

Dynamics-based Markov Chain Monte Carlo methods (D-MCMCs) are sampling methods using
dynamics simulation for state transition in a Markov chain. They have become a workhorse for
Bayesian inference, with well-known examples like Hamiltonian Monte Carlo (HMC) [22] and
stochastic gradient Langevin dynamics (SGLD) [29]. Here we consider variants for sampling from
distributions defined on Riemann manifolds. Overall, geodesic Monte Carlo (GMC) [7] stands out
for its notable performance on manifolds with known geodesic flow, such as simplex, hypersphere
and Stiefel manifold [26, 16]. Its applicability to manifolds with no global coordinate systems (e.g.
hyperspheres) is enabled by the embedding technique, and its geodesic integrator eliminates inner
(within one step in dynamics simulation) iteration to ensure efficiency. It is also used for efficient
sampling from constraint distributions [17]. Constrained HMC (CHMC) [6] aims at manifolds defined
by a constraint in some Rn. It covers all common manifolds, but inner iteration makes it less appealing.
Other D-MCMCs involving Riemann manifold, e.g. Riemann manifold Langevin dynamics (RMLD)
and Riemann manifold HMC (RMHMC) [13], are invented for better performance but still on the task
of sampling in Euclidean space, where the target variable is treated as the global coordinates of some
distribution manifold. Although they can be used to sample in non-Euclidean Riemann manifolds by
replacing the distribution manifold with the target manifold, a global coordinate system of the target
manifold is required. Moreover, RMHMC suffers from expensive inner iteration.

However, GMC scales undesirably to large datasets, which are becoming common. An effective
strategy to scale up D-MCMCs is by randomly sampling a subset to estimate a noisy but unbiased
stochastic gradient, with stochastic gradient MCMC methods (SG-MCMCs). Welling et al. [29]
pioneered in this direction by developing stochastic gradient Langevin dynamics (SGLD). Chen
et al. [9] apply the idea to HMC with stochastic gradient HMC (SGHMC), where a non-trivial
dynamics with friction has to be conceived. Ding et at. [10] propose stochastic gradient Nosé-Hoover
thermostats (SGNHT) to automatically adapt the friction to the noise by a thermostats. To unify
dynamics used for SG-MCMCs, Ma et al. [19] develop a complete recipe to formulate the dynamics.
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Table 1: A summary of some D-MCMCs. –: sampling on manifold not supported; †: The integrators
are not in the SSI scheme (It is unclear whether the claimed “2nd-order” is equivalent to ours); ‡:
2nd-order integrators for SGHMC and mSGNHT are developed by [8] and [18], respectively.

methods stochastic
gradient

no inner
iteration

no global
coordinates

order of
integrator

GMC [7] ×
√ √

2nd
RMLD [13] ×

√
× 1st

RMHMC [13] × × × 2nd†

CHMC [6] × ×
√

2nd†

SGLD [29]
√ √

– 1st
SGHMC [9] / SGNHT [10]

√ √
– 1st‡

SGRLD [23] / SGRHMC [19]
√ √

× 1st

SGGMC / gSGNHT (proposed)
√ √ √

2nd

In this paper, we present two SG-MCMCs for manifolds with known geodesic flow: stochastic
gradient geodesic Monte Carlo (SGGMC) and geodesic stochastic gradient Nosé-Hoover thermostats
(gSGNHT). They are the first scalable sampling methods on manifolds with known geodesic flow and
no global coordinate systems. We use the recipe [19] to tackle the non-trivial dynamics conceiving
task. Our novel dynamics are also suitable for developing 2nd-order integrators by adopting the
symmetric splitting integrator (SSI) [8] scheme. A key property of a Kth-order integrator is the
bias of the expected sample average at iteration L can be upper bounded by L−K/(K+1) and the
mean square error by L−2K/(2K+1) [8], so a higher order integrator basically performs better. Our
integrators also incorporate the geodesic integrator to avoid inner iteration. Our methods can also be
used to scalably sample from constraint distributions [17] like GMC.

There exist other SG-MCMCs on Riemann manifold, e.g. SGRLD [23] and SGRHMC [19], stochastic
gradient versions of RMLD and RMHMC respectively. But they also require the Riemann man-
ifold to have a global coordinate system, like their original versions as is mentioned above. So
basically they cannot draw samples from hyperspheres, while our methods are capable. Technically,
SGRLD/SGRHMC (and RMLD/RMHMC) samples in the coordinate space, so we need a global one
to make it valid. The explicit use of the Riemann metric tensor also makes the methods more difficult
to implement. Our methods (and GMC) sample in the isometrically embedded space, where the
whole manifold is represented and the Riemann metric tensor is implicitly embodied by the isometric
embedding. Moreover, our integrators are of a higher order. Tab. 1 summarizes the key properties of
aforementioned D-MCMCs, where our advantages are clearly shown.

Finally, we apply our samplers to perform inference for spherical admixture models (SAM) [24].
SAM defines a hierarchical generative process to describe the data that are expressed as unit vectors
(i.e., elements on the hypersphere). The task of posterior inference is to identify a set of latent topics,
which are also unit vectors. This process is highly challenging due to a non-conjugate structure and
the strict manifold constraints. None of the existing MCMC methods is both applicable to the task
and scalable. We demonstrate that our methods are the most efficient methods to learn SAM on large
datasets, with a good performance on testing data perplexity.

2 Preliminaries
We briefly review the basics of SG-MCMCs. Consider a Bayesian model with latent variable q, prior
π0(q) and likelihood π(x|q). Given a dataset D = {xd}Dd=1, sampling from the posterior π(q|D)

by D-MCMCs requires computing the gradient of potential energy ∇U(q) , −∇ log π(q|D) =

−∇ log π0(q)−
∑D
d=1∇ log π(xd|q), which is linear to data size D thus not scalable. SG-MCMCs

address this challenge by randomly drawing a subset S ofD to build the stochastic gradient∇qŨ(q) ,
−∇q log π0(q)− D

|S|
∑
x∈S ∇q log π(x|q), a noisy but unbiased estimate.Under the i.i.d. assumption

of D, the central limit theorem holds: in the sense of convergence in distribution for large D,
∇qŨ(q) = ∇qU(q) +N (0, V (q)), (1)

where we use N (·, ·) to denote a Gaussian random variable and V (q) is some covariance matrix.

The gradient noise raises challenging restrictions to the SG-MCMC dynamics. Ma et al. [19]
then provide a recipe to construct correct dynamics. It claims that for a random variable z, given
a Hamiltonian H(z), a skew-symmetric matrix (curl matrix) Q(z) and a positive definite matrix
(diffusion matrix) D(z), the dynamics defined by the following stochastic differential equation (SDE)

2



dz = f(z)dt+
√

2D(z)dW (t) (2)

has the unique stationary distribution π(z) ∝ exp{−H(z)}, where W (t) is the Wiener process and

f(z) = − [D(z) +Q(z)]∇zH(z) + Γ(z), Γi(z) =
∑
j

∂

∂zj
(Dij(z) +Qij(z)) . (3)

The above dynamics is compatible with stochastic gradient. For SG-MCMCs, z is usually an
augmentation of the target variable q, and the Hamiltonian usually follows the form H(z) = T (z) +

U(q). Referring to Eqn. (1), ∇qH̃(z) = ∇qH(z) +N (0, V (q)) and f̃(z) = f(z) +N (0, B(z)),
where B(z) is the covariance matrix of the Gaussian noise passed from ∇zH̃(z) to f̃(z) through
Eqn. (3). We informally rewrite dW (t) as N (0,dt) and express dynamics Eqn. (2) as

dz =f(z)dt+N (0, 2D(z)dt) = f(z)dt+N (0, B(z)dt2) +N
(
0, 2D(z)dt−B(z)dt2

)
=f̃(z)dt+N

(
0, 2D(z)dt−B(z)dt2

)
. (4)

This tells us that the same dynamics can be exactly expressed by stochastic gradient. Moreover, the
recipe is complete: for any continuous Markov process defined by Eqn. (2) with a unique stationary
distribution π(z) ∝ exp{−H(z)}, there exists a skew-symmetric matrix Q(z) so that Eqn. (3) holds.

3 Stochastic Gradient Geodesic MCMC Methods
We now formally develop our SGGMC and gSGNHT. We will describe the task settings, develop the
dynamics, and show how to simulate by 2nd-order integrators and stochastic gradient.

3.1 Technical Descriptions of the Settings

ℝ𝑚 𝑚 = 2 ℝ𝑛 𝑛 = 3

𝒩

𝑄

𝑞

Φ

Ω

Ξ 𝒩

𝜉

Ξ

𝑥

ℳ

Figure 1: An illustration of manifoldM
with local coordinate system (N ,Φ) and
embedding Ξ. See text for details.

We first describe a Riemann manifold. Main concepts
are depicted in Fig. 1. LetM be an m-dim Riemann
manifold, which is covered by a set of local coordi-
nate systems. Denote one of them by (N ,Φ), where
N ⊆ M is an open subset, and Φ : N → Ω, Q 7→ q
with Ω , Φ(N ) ⊆ Rm, Q ∈ N and q ∈ Ω is a
homeomorphism. Additionally, transition mappings
between any two intersecting local coordinate systems
are required to be smooth. Denote the Riemann metric
tensor under (N ,Φ) by G(q), an m × m symmetric
positive-definite matrix. Another way to describeM is through embedding — a diffeomorphism
Ξ : M → Ξ(M) ⊆ Rn (n ≥ m). In (N ,Φ), Ξ can be embodied by a more sensible mapping
ξ , Ξ ◦ Φ−1 : Rm → Rn, q 7→ x, which links the coordinate space and the embedded space. For
convenience, we only consider isometric embeddings (whose existence is guaranteed [21]): Ξ such
that G(q)ij =

∑n
l=1

∂ξl(q)
∂qi

∂ξl(q)
∂qj

, 1 ≤ i, j ≤ m holds for any local coordinate system. Common
manifolds are subsets of some Rn, in which case the identity mapping (as Ξ) from Rn (whereM is
defined) to Rn (the embedded space) is isometric.

To define a distribution on a Riemann manifold, from which we want to sample, we need a measure.
In the coordinate space Rm, Ω naturally possesses the Lebesgue measure λm(dq), and the probability
density can be defined in Ω, which we denote as π(q). In the embedded space Rn, Ξ(N ) naturally
possesses the Hausdorff measureHm(dx), and we denote the probability density w.r.t this measure
as πH(x). The relation between them can be found by πH(ξ(q)) = π(q)/

√
|G(q)|.

3.2 The Dynamics
We now construct our dynamics using the recipe [19] so that our dynamics naturally have the desired
stationary distribution, leading to correct samples. It is important to note that the recipe only suits for
dynamics in a Euclidean space. So we can only develop the dynamics in the coordinate space but
not in the embedded space Ξ(M), which is generally not Euclidean. However it is advantageous to
simulate the dynamics in the embedded space (See Sec. 3.3).

Dynamics for SGGMC Define the momentum in the coordinate space p ∈ Rm and the augmented
variable z = (q, p) ∈ R2m. Define the Hamiltonian 2 H(z) = U(q) + 1

2 log |G(q)|+ 1
2p
>G(q)−1p,

2Another derivation of the momentum and the Hamiltonian originated from physics in both coordinate and
embedded spaces is provided in Appendix C.
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where U(q) , − log π(q). We define the Hamiltonian so that the canonical distribution π(z) ∝
exp{−H(z)} marginalized w.r.t p recovers the target distribution π(q). For a symmetric positive
definite n× n matrix C, define the diffusion matrix D(z) and the curl matrix Q(z) as

D(z) =

(
0 0
0 M(q)>CM(q)

)
, Q(z) =

(
0 −I
I 0

)
,

where we define M(q)n×m : M(q)ij = ∂ξi(q)/∂qj . So from Eqn. (2, 3), the dynamics dq =G−1pdt

dp =−∇qUdt− 1

2
∇q log |G|dt−M>CMG−1p dt− 1

2
∇q
[
p>G−1p

]
dt+N (0, 2M>CMdt)

(5)has a unique stationary distribution π(z) ∝ exp{−H(z)}.

Dynamics for gSGNHT Define z = (q, p, ξ) ∈ R2m+1, where ξ ∈ R is the thermostats. For a
positive C ∈ R, define the Hamiltonian H(z) = U(q) + 1

2 log |G(q)|+ 1
2p
>G(q)−1p+ m

2 (ξ−C)2,
whose marginalized canonical distribution is π(q) as desired. Define D(z) and Q(z) as

D(z) =

(
0 0 0
0 CG(q) 0
0 0 0

)
, Q(z) =

 0 −I 0
I 0 p/m
0 −p>/m 0

 ,

Then by Eqn. (2, 3) the proper dynamics of gSGNHT is
dq =G−1pdt

dp =−∇qUdt− 1

2
∇q log |G|dt− ξpdt− 1

2
∇q
[
p>G−1p

]
dt+N (0, 2CGdt)

dξ =(
1

m
p>G−1p− 1)dt

. (6)

These two dynamics are novel. They are extensions of the dynamics of SGHMC and SGNHT to
Riemann manifolds, respectively. Conceiving the dynamics in this form is also intended for the
convenience to develop 2nd-order geodesic integrators, which differs from SGRHMC.

3.3 Simulation with 2nd-order Geodesic Integrators
In this part we develop our integrators by following the symmetric splitting integrator (SSI) scheme [8],
which is guaranteed to be of 2nd-order. The idea of SSI is to first split the dynamics into parts with
each analytically solvable, then alternately simulate each exactly with the analytic solutions. Although
also SSI, the integrator of GMC does not fit our dynamics where diffusion arises. But we adopt its
embedding technique to get rid of any local coordinate system thus release the global coordinate
system requirement. So we will solve and simulate the split dynamics in the isometrically embedded
space, where everything is expressed by the position x = ξ(q) and the velocity v = ẋ (which is
actually the momentum in the isometrically embedded space, see Appendix C; the overhead dot
means time derivative), instead of q and p.

Integrator for SGGMC We first split dynamics (5) into sub-SDEs with each analytically solvable:

A :

dq=G−1pdt

dp=− 1

2
∇q
[
p>G−1p

]
dt
, B :

{
dq=0

dp=−M>CMG−1pdt
, O :


dq=0

dp=−∇qU(q)dt− 1

2
∇qlog|G(q)|dt

+N (0, 2M>CMdt)

.

As noted in GMC, the solution of dynamics A is the geodesic flow of the manifold [1]. Intuitively,
dynamics A describes motion with no force so a particle moves freely on the manifold, e.g. the
uniform motion in Euclidean space, and motion along great circles (velocity rotating with varying
tangents along the trajectory) on hypersphere Sd−1 , {x ∈ Rd|‖x‖ = 1} (‖ · ‖ denotes `2-norm).
The evolution of the position and velocity of this kind is the geodesic flow. We require an explicit
form of the geodesic flow in the embedded space. For Sd−1,{

x(t) = x(0) cos(αt) +
(
v(0)/α

)
sin(αt)

v(t) = −αx(0) sin(αt) + v(0) cos(αt)
(7)
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is the geodesic flow expressed by the embedded variables x and v, where α = ‖v(0)‖.
By details in [7] or Appendix A, dynamics B and O are solved as

B :

{
x(t)=x(0)

v(t)=expm
{
−Λ
(
x(0)

)
Ct
}
v(0)

, O :

{
x(t)=x(0)

v(t)=v(0)+Λ
(
x(0)

)[
−∇xUH

(
x(0)

)
t+N (0, 2Ct)

] ,
where UH(x) , − log πH(x), expm{·} is the matrix exponent, and Λ(x) is the projection onto the
tangent space at x in the embedded manifold. For Rn, Λ(x) = In (the identity mapping in Rn) and
for Sn−1 embedded in Rn, Λ(x) = In − xx> (see Appendix A.3).

We further reduce dynamics B for scalar C: v(t) = Λ(x(0)) exp{−Ct}v(0) = exp{−Ct}v(0), by
noting that exp{−Ct} is a scalar and v(0) already lies on the tangent space at x(0). To illustrate this
form, we expand the exponent for small t and get v(t) = (1− Ct)v(0), which is exactly the action
of a friction dissipating energy to control injected noise, as proposed in SGHMC. Our investigation
reveals that this form holds generally for v as the momentum in the isometrically embedded space,
but not the usual momentum p in the coordinate space. In SGHMC, v and p are undistinguishable,
but in our case v can only lie in the tangent space and p is arbitrary in Rm.

Integrator for gSGNHT We split dynamics (6) in a similar way:

A :


dq =G−1pdt

dp =− 1

2
∇q
[
p>G−1p

]
dt

dξ =
( 1

m
p>G−1p−1

)
dt

, B :


dq =0

dp =−ξpdt

dξ =0

, O :


dq =0

dp =−∇qUdt− 1

2
∇q log |G|dt

+N (0, 2CGdt)

dξ =0

.

For dynamics A, the solution of q and p is again the geodesic flow. To solve ξ, we first figure out that
for dynamicsA, p>G−1p is constant: d

dt

[
p>G(q)−1p

]
= ∇q

[
p>G(q)−1p

]>
q̇+2

[
G(q)−1p

]>
ṗ =

−2ṗ>q̇+ 2q̇>ṗ = 0. Alternatively we note that 1
2p
>G−1p = 1

2v
>v is the kinetic energy 3 conserved

by motion with no force. Now the evolution of ξ can be solved as ξ(t) = ξ(0)+
(

1
mv(0)>v(0)− 1

)
t.

Dynamics O is identical to the one of SGGMC. Dynamics B can be solved similarly with only
v updated: v(t) = exp{−ξ(0)t}v(0). Expansion of this recovers the dissipation of energy by an
adaptive friction proposed by SGNHT, and we extend it to an embedded space.

Now we consider incorporating stochastic gradient. Only the common dynamics O is affected.
Similar to Eqn. (1), we express the stochastic gradient as ∇xŨH(x) = ∇xUH(x) + N (0, V (x)),
then reformulate the solution of dynamics O as

v(t) = v(0) + Λ
(
x(0)

)
·
[
−∇xŨH

(
x(0)

)
t+N

(
0, 2Ct−V

(
x(0)

)
t2
)]
. (8)

To estimate the usually unknown V (x), a simple way is just to take it as zero, in the sense that V (x)t2

is a higher order infinitesimal of 2Ct for t as a small simulation step size. Another way to estimate
V (x) is by the empirical Fisher information, as is done in [2].

Finally, as SSI suggests, we simulate the complete dynamics by exactly simulating these solutions
alternately in an “ABOBA” pattern. For a time step size of ε, dynamics A and B advance by ε/2 for
once and dynamics O by ε. As other SG-MCMCs, we omit the unscalable Metropolis-Hastings test.
But the consistency is still guaranteed [8] of e.g. the estimation by averaging over samples drawn
from SG-MCMCs. Algorithms of SGGMC and gSGNHT are listed in Appendix E.

4 Application to Spherical Admixture Model
We now apply SGGMC/gSGNHT to solve the challenging task of posterior inference in Spherical
Admixture Model (SAM) [24]. SAM is a Bayesian topic model for spherical data (each datum is in
some Sd−1), such as the tf-idf representation of text data. It enables more feature representations for
hierarchical Bayesian models, and have the benefit over Latent Dirichlet Allocation (LDA) [5] to
directly model the absence of words. The structure of SAM is shown in Fig. 2. Each document vd,
each topic βk, the corpus mean µ and the hyper-parameter m are all in SV−1 with V the vocabulary
size. Each topic proportion θd is in (K − 1)-dim simplex with K the number of topics.

3p>G−1p = (G−1p)>G(G−1p) = q̇>(M>M)q̇ = (Mq̇)>(Mq̇) = v>v for an isometric embedding.
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SAM uses the von Mises-Fisher distribution (vMF) (see e.g. [20]) to model variables
on hyperspheres. The vMF on Sd−1 with mean µ ∈ Sd−1 and concentration param-
eter κ ∈ R+ has pdf (w.r.t the Hausdorff measure) vMF(x|µ, κ) = cd(κ) exp{κµ>x},
where cd(κ) = κd/2−1/

(
(2π)d/2Id/2−1(κ)

)
and Ir(·) denotes the modified Bessel func-

tion of the first kind and order r. Then the generating process of SAM is

         
 
                            𝐷 

 
 
            𝐾 

𝑚, 𝜅0 𝜅 𝜇 

𝛽𝑘 𝜃𝑑 𝑣𝑑 

𝛼 

𝜎 

Figure 2: An illustration of SAM
model structure.

• Draw µ ∼ vMF(µ|m,κ0);
• For k = 1, . . . ,K, draw topic βk ∼ vMF(βk|µ, σ);
• For d = 1, . . . , D, draw θd ∼ Dir(θd|α) and vd ∼

vMF(vd|v̄(β, θd), κ),

where v̄(β, θd),
βθd
‖βθd‖ with β , (β1, . . . , βK) is an approxi-

mate spherical weighted mean of topics. The joint distribution
of
(
v , (v1, . . . , vD), β, θ , (θ1, . . . , θK), µ

)
can be known.

The inference task is to estimate the topic posterior π(β|v). As it is intractable, [24] provides a mean-
field variational inference method and solves an optimization problem under spherical constraint,
which is tackled by repeatedly normalizing. However, this treatment is not applicable to most
sampling methods since it may corrupt the distribution of the samples. [24] tries a simple adaptive
Metropolis-Hastings sampler with undesirable results, and no more attempt of sampling methods
appears. Due to the deficiency of global coordinate system of hypersphere, most Riemann manifold
samplers including SGRLD and SGRHMC fail. To our knowledge, only CHMC and GMC are
suitable, yet not scalable. Our samplers are appropriate for the task, with the advantage of scalability.

Now we present our inference method that uses SGGMC/gSGNHT to directly sample from π(β|v).
First we note that µ can be collapsed analytically and the marginalized distribution of (v, β, θ) is:

π(v, β, θ) = cV (κ0)cV (σ)KcV (‖m̄(β)‖)−1
D∏
d=1

Dir(θd|α)vMF(vd|v̄(β, θd), κ), (9)

where m̄(β) , κ0m + σ
∑K
k=1 βk. To sample from π(β|v) using our samplers, we only need to

know a stochastic estimate of the gradient of potential energy ∇βU(β|v) , −∇β log π(β|v), which
can be estimated by adopting the technique used in [11]: ∇β log π(β|v) =

1

π(β|v)
∇β
∫
π(β, θ|v)dθ =

∫
π(β, θ|v)

π(β|v)

∇βπ(β, θ|v)

π(β, θ|v)
dθ = Eπ(θ|β,v) [∇β log π(β, θ|v)] ,

where ∇β log π(β, θ|v) = ∇β log π(v, β, θ) is known, and the expectation can be estimated by aver-
aging over a set of samples {θ(n)}Nn=1 from π(θ|v, β): ∇βU(β|v) ≈ 1

N

∑N
n=1∇β log π(v, β, θ(n)).

To draw {θ(n)}Nn=1, noting the simplex constraint and that the target distribution π(θ|v, β) is known
up to a constant multiplier, we use GMC to do the task.

To scale up, we use a subset {d(s)}Ss=1 of indices of randomly chosen items from the whole data set
to get a stochastic estimate for each∇β log π(v, β, θ(n)). The final stochastic gradient is:

∇βŨ(β|v) ≈ ∇β log cV (‖m̄(β)‖)− κ D

NS

N∑
n=1

S∑
s=1

v>d(s)v̄(β, θ
(n)
d(s)). (10)

The inference algorithm for SAM by SGGMC/gSGNHT is summarized in Alg. 3 in Appendix E.

5 Experiments
We present empirical results on both synthetic and real datasets to prove the accuracy and efficiency
of our methods. All target densities are expressed in the embedded space w.r.t the Hausdorff measure
so we omit the subscript “H”. Synthetic experiments are only for SGGMC since the advantage to use
thermostats has been shown by [10] and the effectiveness of gSGNHT is presented on real datasets.
Detailed settings of the experiments are provided in Appendix F.

5.1 Toy Experiment
We first present the utility and check the correctness of SGGMC by a greenhouse experiment with
known stochastic gradient noise. Consider sampling from a circle (S1) for easy visualization. We set
the target distribution such that the potential energy is U(x) = − log

(
exp{5µ>1 x}+ 2 exp{5µ>2 x}

)
,

where x, µ1, µ2 ∈ S1 and µ1 = −µ2 = π
3 (angle from +x direction). The stochastic gradient is
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(b) π(v2|D)
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Figure 4: (a-b): True and empirical densities for π(v1|D) and π(v2|D). (c) True (left) and empirical
by SGGMC (right) densities for π(v1, v2|D).

produced by corrupting with N (0, 1000I), whose variance is used as V (x) in Eqn. (8) for sampling.
Fig. 3(a) shows 100 samples from SGGMC and empirical distribution of 10,000 samples in the
embedded space R2. True and empirical distributions are compared in Fig. 3(b) in angle space (local
coordinate space). We see no obvious corruption of the result when using stochastic gradient.
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Figure 3: Toy experiment results: (a) samples and
empirical distribution of SGGMC; (b) comparison
of true and empirical distributions.

It should be stressed that although it is possi-
ble to apply scalable methods like SGRLD in
spherical coordinate systems (almost global
ones), it is too troublesome to work out the
form of e.g. Riemann metric tensor, and spe-
cial treatments like reflection at boundaries
have to be considered. Numerical instability
at boundaries also tends to appear. All these
will get even worse in higher dimensions. Our
methods work in embedded spaces, so all
these issues are bypassed and can be elegantly
extended to high dimensions.

5.2 Synthetic Experiment
We then test SGGMC on a simple Bayesian posterior estimation task. We adopt a model with similar
structure as the one used in [29]. Consider a mixture model of two vMFs on S1 with equal weights:

π(v1)=vMF(v1|e1,κ1), π(v2)=vMF(v2|e1,κ2), π(xi|v1,v2)∝vMF(xi|v1,κx) + vMF(xi|µ,κx),

where e1 = (1, 0) and µ , (v1 +v2)/‖v1 +v2‖. The task is to infer the posterior π(v1, v2|D), where
D = {xi}D=100

i=1 is our synthetic data that is generated from the likelihood with v1 = − π
24 , v2 = π

8
and κ1 = κ2 = κx = 20 by GMC. SGGMC uses empirical Fisher information in the way of [2]
for V (x) in Eqn. (8), and uses 10 for batch size. Fig. 4(a-b) show the true and empirical marginal
posteriors of v1 and v2, and Fig. 4(c) presents empirical joint posterior by samples from SGGMC
and its true density. We see that samples from SGGMC exhibit no observable corruption when a
mini-batch is used, and fully explore the two modes and the strong correlation of v1 and v2. 4

5.3 Spherical Admixture Models
Setups For baselines, we compare with the mean-field variational inference (VI) by [24] and its
stochastic version (StoVI) based on [15], as well as GMC methods. It is problematic for GMC to
directly sample from the target distribution π(β|v) since the potential energy is hard to estimate, which
is required for Metropolis-Hastings (MH) test in GMC. An approximate Monte Carlo estimation is
provided in Appendix B and the corresponding method for SAM is GMC-apprMH. An alternative
is GMC-bGibbs, which adopts blockwise Gibbs sampling to alternately sample from π(β|θ, v) and
π(θ|β, v) (both known up to a constant multiplier) using GMC.

We evaluate the methods by log-perplexity — the average of negative log-likelihood on a held-out
test set Dtest. Variational methods produce a single point estimate β̂ and the log-perplexity is
log-perp = − 1

|Dtest|
∑
d∈Dtest

log π(vd|β̂). Sampling methods draw a set of samples {β(m)}Mm=1

and log-perp = − 1
|Dtest|

∑
d∈Dtest

log( 1
M

∑M
m=1 π(vd|β(m))). In both cases the intractable π(vd|β)

needs to be estimated. By noting that π(vd|β) =
∫
π(vd, θd|β)dθd = Eπ(θd|β)[π(vd|β, θd)], we

4Appendix D provides a rationale on the shape of the joint posterior.
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estimate it by averaging π(vd|β, θ(n)d ) (exactly known from the generating process) over samples
{θ(n)d }Nn=1 drawn from π(θd|β) = π(θd) = Dir(α), the prior of θd. The log-perplexity is not
comparable among different models so we exclude LDA from our baseline.

We show the performance of all methods on a small and a large dataset. Hyper-parameters of
SAM are fixed while training and set the same for all methods. V (x) in Eqn. (8) is taken zero
for SGGMC/gSGNHT. All sampling methods are implemented 5 in C++ and fairly parallelized
by OpenMP. VI/StoVI are run in MATLAB codes by [24] and we only use their final scores for
comparison. Appendix F gives further implementation details, including techniques to avoid overflow.
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Figure 5: Evolution of log-perplexity along wall time of all methods
on (a) 20News-different dataset and (b) 150K Wikipedia subset.

On the small dataset
The small dataset is the
20News-different dataset
used by [24], which con-
sists of 3 categories from
20Newsgroups dataset. It
is small (1,666 training and
1,107 test documents) so
we have the chance to see
the eventual results of all
methods. We use 20 topics
and 50 as the batch size.

Fig. 5(a) shows the perfor-
mance of all methods. We
can see that our SGGMC and gSGNHT perform better than others. VI converges swiftly but cannot
go any lower due to the intrinsic gap between the mean-field variational distribution and the true
posterior. StoVI converges slower than VI in this small scale case, and exhibits the same limit.
All sampling methods eventually go below variational methods, and ours go the lowest. gSGNHT
shows its benefit to outperform SGGMC under the same setting. For our methods, an appropriately
smaller batch size achieves a better result due to the speed-up by subsampling. Note that even the
full-batch SGGMC and gSGNHT outperform GMC variants. This may be due to the randomness in
the dynamics helps jumping out of one local mode to another for a better exploration.

On the large dataset For the large dataset, we use a subset of the Wikipedia dataset with 150K
training and 1K test documents, to challenge the scalability of all the methods. We use 50 topics and
100 as the batch size. Fig. 5(b) shows the outcome. We see that the gap between our methods and
other baselines gets larger, indicating our scalability. Bounded curves of VI/StoVI, the advantage of
using thermostats and subsampling speed-up appear again. Our full-batch versions are still better than
GMC variants. GMC-apprMH and GMC-bGibbs scale badly; they converge slowly in this case.

6 Conclusions and Discussions

We propose SGGMC and gSGNHT, SG-MCMCs for scalable sampling from manifolds with known
geodesic flow. They are saliently efficient on their applications. Novel dynamics are constructed and
2nd-order geodesic integrators are developed. We apply the methods to SAM topic model for more
accurate and scalable inference. Synthetic experiments verify the validity and experiments for SAM
on real-world data shows an obvious advantage in accuracy over variational inference methods and
in scalability over other applicable sampling methods. There remains possible broad applications
of our methods, including models involving vMF (e.g. mixture of vMF [4, 14, 28], DP mixture of
vMF [12, 3, 27]), constraint distributions [17] (e.g. truncated Gaussian), and distributions on Stiefel
manifold (e.g. Bayesian matrix completion [25]), where the ability of scale-up will be appealing.
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5All the codes and data can be found at http://ml.cs.tsinghua.edu.cn/~changliu/sggmcmc-sam/.
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