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Introduction

Motivation

Motivation: the need of efficient sampling on manifold for Bayesian
inference

Bayesian inference: get access to the posterior π(q|D) (e.g. by
sampling from it).
+
To describe data on manifold (e.g. normalized tf-idf feature is on
hyperspheres), Bayesian models need to use q that is also on
manifold (e.g. SAM [14] uses q also on hyperspheres)
=
Inference for these models (sampling from π(q|D)) is a problem of
sampling on manifold.
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Introduction

Challenges

Challenges of efficient sampling on manifold for Bayesian inference
Constraint of manifold

To sample from hyperspheres, samples have to satisfy: ‖q‖ = 1.
Non-scalability

To sample from a posterior π(q|D) ∝ π0(q)
∏D
d=1 π(xd|q): O(D)!
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Introduction

Current Stage

Current Stage (Related works)
Constraint of manifold

MALA & RMHMC [9]: sample in coordinate space, iteratively
simulate
CHMC [3]: iterative projection on manifold.
GMC [4]: sample in embedded space and use geodesic for
simulation

Non-scalability: use mini-batch to estimate stochastic gradient
(SG-MCMC)

SGLD [15], SGHMC [6], SGNHT [7]
Ma et al. (2015) [12] give a framework for the dynamics of
SG-MCMC, Chen et al. (2015) [5] give an analysis on simulation
methods (integrators) of the dynamics.

Combining both: SGRLD [13], SGRHMC [12]. But:
Both by sampling in coordinate space, so fail when manifold has no
global coordinate systems (e.g. hyperspheres).
Hard to apply better integrators.
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Introduction

Our Work

To combine both in a better way:
Stochastic Gradient Geodesic Monte Carlo (SGGMC),
Geodesic Stochastic Gradient Nosé-Hoover Thermostats (gSGNHT).

Release the requirement of global coordinate systems: sample in
embedded space
Use stochastic gradient: adopt the framework of [12].
Avoid inner iteration: use geodesic for simulation.
Better integrator: following the idea of [5].
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Introduction

Our Work

Table: A summary of related methods. –: sampling on manifold not supported; †:
The integrators are not in the SSI scheme (It is unclear whether the claimed
“2nd-order” is equivalent to ours); ‡: 2nd-order integrators for SGHMC and mSGNHT
are developed by [5] and [11], respectively.

methods stochastic
gradient

no inner
iteration

no global
coordinates

order of
integrator

GMC [4] ×
√ √

2nd
RMLD [9] ×

√
× 1st

RMHMC [9] × × × 2nd†

CHMC [3] × ×
√

2nd†

SGLD [15]
√ √

– 1st
SGHMC [6] / SGNHT [7]

√ √
– 1st‡

SGRLD [13] / SGRHMC [12]
√ √

× 1st

SGGMC / gSGNHT (proposed)
√ √ √

2nd
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Preliminaries

Stochastic Gradient MCMC

Prevalent MCMC: require the potential energy U(q) , − log π(q|D)
and its gradient

∇qU(q) = −∇q log π(q)−
D∑
d=1

∇q log π(xd|q) (1)

Stochastic Gradient MCMC (SG-MCMC): use a randomly chosen
mini-batch S to estimate the gradient

∇qŨ(q) = −∇q log π0(q)−
D

|S|
∑
x∈S
∇q log π(x|q) (2)

For i.i.d. data, we can approximate

∇qŨ(q) = ∇qU(q) +N (0, V (q)) (3)
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Preliminaries

Stochastic Gradient MCMC

Theorem (The complete recipe for SG-MCMC dynamics ([12]))

For r.v. z, given a function (Hamiltonian) H(z), a skew-symmetric
matrix Q(z) and a positive definite matrix D(z), then the dynamics

dz = f(z)dt+N (0, 2D(z)dt) (4)

uniquely keeps π(z) ∝ exp{−H(z)} invariant, where

f(z) = − [D(z) +Q(z)]∇zH(z) + Γ(z),

Γi(z) =
∑
j

∂

∂zj
(Dij(z) +Qij(z)) (5)

Take z = (q, p) and H(z) = T (z) + U(q), then∫
exp{−H(z)}dp ∝ π(q|D) provided that

∫
exp{T (z)}dp is independent

of q.
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Preliminaries

Stochastic Gradient MCMC

The dynamics is compatible with stochastic gradient.
∇zH(z) = ∇zT (z) +∇qU(q),
∇zH̃(z) = ∇zT (z) +∇qŨ(q) = ∇zH(z) +N (0, V (q)),
f̃(z) = f(z) +N (0, B(z)).
Then the dynamics can be expressed in another form:

dz =f(z)dt+N (0, 2D(z)dt)

=f̃(z)dt+N
(
0, 2D(z)dt−B(z)dt2

)
. (6)

Estimation of B: empirical Fisher information ([2]), or just zero.
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Stochastic Gradient Geodesic MCMC Methods Technical Description of the Settings

Technical Description of the Settings

Two ways to describe an m-dim
Riemann manifoldM:

Coordinate space (⊂ Rm)
(N ,Φ): one of the local
coordinate systems. Φ is a
homomorphism.
G(q): the Riemann metric
tensor under (M1,Φ).
Global one may not exist;
easy constraint.

ℝ𝑚 𝑚 = 2 ℝ𝑛 𝑛 = 3

𝒩

𝑄

𝑞

Φ

Ω

Ξ 𝒩

𝜉

Ξ

𝑥

ℳ

Figure: An illustration of a Riemann manifold
M and related concepts

Embedded space (⊂ Rn)
Ξ :M→ Rn (n ≥ m) injective, the embedding fromM in Rn.
ξ , Ξ ◦ Φ−1 : Rm → Rn links the coordinate space and the
embedded space.
Global description ofM and always exists; hard constraint.
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Stochastic Gradient Geodesic MCMC Methods Technical Description of the Settings

Technical Description of the Settings

Define a distribution onM:
Coordinate space (⊂ Rm)
π(q) w.r.t. the Lebesgue
measure λm(dq) in Rm.
Embedded space (⊂ Rn)
πH(x)w.r.t. the Hausdorff
measure Hm(dx) in Ξ(M).
πH(ξ(q)) = π(q)/

√
|G(q)|

ℝ𝑚 𝑚 = 2 ℝ𝑛 𝑛 = 3

𝒩

𝑄

𝑞

Φ

Ω

Ξ 𝒩

𝜉

Ξ

𝑥

ℳ

Figure: An illustration of a Riemann manifold
M and related concepts

We will derive the dynamics in the coordinate space for using the
complete recipe, and simulate in the embedded space for releasing
global coordinates requirement.
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Stochastic Gradient Geodesic MCMC Methods The Dynamics

The Dynamics

Conceive the dynamics using the complete recipe.
SGGMC

Augment by z = (q, p) ∈ R2m.
H(z) = U(q) + 1

2 log |G(q)|+ 1
2p
>G(q)−1p, s.t.

∫
π(z)dp ∝ π(q), the

target distribution.

D(z) =

(
0 0
0 M(q)>CM(q)

)
, Q(z) =

(
0 −I
I 0

)
,

where we define M(q)n×m : M(q)ij = ∂qjξi(q), and C is some
symmetric positive definite n× n matrix.
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Stochastic Gradient Geodesic MCMC Methods The Dynamics

The Dynamics

SGGMC
Then according to Eqn. (4, 5), the desired dynamics is

dq =G−1pdt

dp =−∇qU(q)dt− 1

2
∇q log |G(q)|dt

−M>CMG−1p dt− 1

2
∇q
[
p>G−1p

]
dt

+N (0, 2M>CMdt)

. (7)
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Stochastic Gradient Geodesic MCMC Methods The Dynamics

The Dynamics

Conceive the dynamics using the complete recipe.
gSGNHT

Augment by z = (q, p, ξ) ∈ R2m+1, where ξ ∈ R is the thermostats
to adaptively balance the gradient noise [7].
For C > 0, define
H(z) = U(q) + 1

2 log |G(q)|+ 1
2p
>G(q)−1p+ m

2 (ξ − C)2 s.t.∫
π(z)dpdξ ∝ π(q), the target distribution.

D(z) =

 0 0 0
0 CG(q) 0
0 0 0

 , Q(z) =

 0 −I 0
I 0 p/m
0 −p>/m 0

 ,
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Stochastic Gradient Geodesic MCMC Methods The Dynamics

The Dynamics

gSGNHT
Then according to Eqn. (4, 5), the desired dynamics is

dq =G−1pdt

dp =−∇qUdt− 1

2
∇q log |G|dt− ξp dt

− 1

2
∇q
[
p>G−1p

]
dt+N (0, 2CGdt)

dξ =(
1

m
p>G−1p− 1)dt

. (8)

Comments
The two dynamics are novel. They extends SGHMC [6] and
SGNHT [7], respectively.
They are suitable for better integrators to simulate.
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Stochastic Gradient Geodesic MCMC Methods Simulation with 2nd-order Geodesic Integrators

Simulation with 2nd-order Geodesic Integrators

Order of integrator: for a Kth-order integrator, the bias of
expected sample average at iteration L is O(L−K/(K+1)) and
mean square error is O(L−2K/(2K+1)) [5].
The typical Euler integrator is of 1st-order (used by SGRLD,
SGRHMC).
Symmetric Splitting Integrator (SSI) [5] is of 2nd-order.
SSI: 1) split the dynamics into parts with each analytically
solvable; 2) alternately simulate each exactly with the analytic
solutions.
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Stochastic Gradient Geodesic MCMC Methods Simulation with 2nd-order Geodesic Integrators

Simulation with 2nd-order Geodesic Integrators

Apply SSI to SGGMC.
(1) Split the dynamics (7):

A :

{
dq = G−1pdt

dp = −1

2
∇q
[
p>G−1p

]
dt

(9)

B :

{
dq = 0

dp = −M>CMG−1pdt
(10)

O :


dq = 0

dp = −∇qU(q) dt− 1

2
∇q log |G(q)| dt

+N (0, 2M>CMdt)

. (11)
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Stochastic Gradient Geodesic MCMC Methods Simulation with 2nd-order Geodesic Integrators

Simulation with 2nd-order Geodesic Integrators

(2) Solve each part analytically.
Dynamics A:
Analytical solution: the geodesic flow ([4, 1]).

Example (Geodesic flow of hypersphere in the embedded space)

Geodesic flow (force-free motion) on the (d− 1)-dim hypersphere
Sd−1 , {x ∈ Rd|‖x‖ = 1} is the rotation around the origin along the great
circle: x(t) = x(0) cos(αt) +

v(0)

α
sin(αt)

v(t) = −αx(0) sin(αt) + v(0) cos(αt)
, (12)

where x ∈ Sd−1, v = ẋ ∈ Tx(Sd−1) a tangent vector, and α = ‖v(0)‖.
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Stochastic Gradient Geodesic MCMC Methods Simulation with 2nd-order Geodesic Integrators

Simulation with 2nd-order Geodesic Integrators

(2) Solve each part analytically.
Dynamics B and O: analytically solve in the embedded space by
x = ξ(q) and v , ẋ:

B :

{
x(t) = x(0)
v(t) = Λ

(
x(0)

)
expm{−Ct}v(0)

O :

{
x(t) = x(0)
v(t) = v(0)+Λ

(
x(0)

)[
−∇xUH

(
x(0)

)
t+N (0, 2Ct)

]
where UH(x) , − log πH(x), and Λ(x) is the projection onto
Tx(Ξ(M)), the tangent space at x.

Example (The projection Λ(x) for hypersphere in the embedded space)

Tx(Ξ(Sd−1)) is a (d− 1)-dim plane, whose orthogonal complement is the line
in the direction of x. So the projection onto the plane is

Λ(x) = Id − xx>.
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Stochastic Gradient Geodesic MCMC Methods Simulation with 2nd-order Geodesic Integrators

Simulation with 2nd-order Geodesic Integrators

(2) Solve each part analytically.
Dynamics B and O: analytically solve in the embedded space by
x = ξ(q) and v , ẋ:

B :

{
x(t) = x(0)
v(t) = Λ

(
x(0)

)
expm{−Ct}v(0)

O :

{
x(t) = x(0)
v(t) = v(0)+Λ

(
x(0)

)[
−∇xUH

(
x(0)

)
t+N (0, 2Ct)

]
To use stochastic gradient, only dynamics O is affected, which can
be reformulated as

O :


x(t) =x(0)

v(t) =v(0) + Λ
(
x(0)

)
·
[
−∇xŨH

(
x(0)

)
t+N

(
0,
(
2C−V (x(0))t

)
t
)] ,

where V (x) can be estimated by empirical Fisher information, or just
take as zero as discussed.
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Stochastic Gradient Geodesic MCMC Methods Simulation with 2nd-order Geodesic Integrators

Simulation with 2nd-order Geodesic Integrators

(3) Simulate the whole dynamics by alternatively simulate each
sub-dynamics in closed form, in an “ABOBO” pattern.

Algorithm 1 Sampling procedure of SGGMC (for scalar C)

Randomly initialize x(0) ∈ Ξ(M).
Sample v∗ ∼ N (0, I) and project v(0) ← Λ(x(0))v∗.
for n = 1, 2, . . . , do

Sample a subset S for computing ∇xŨH(x). (x0, v0)← (x(n−1), v(n−1)).
for l = 1, 2, . . . , L do
A: Update (x∗, v∗)← (xl−1, vl−1) by the geodesic flow for time step εn

2 .
B: v∗ ← exp{−C εn

2 }v
∗.

O: v∗ ← v∗ + Λ(x∗) ·
[
−∇xŨH(x∗)εn+N

(
0, (2C−εnV (x∗))εn

)]
.

B: v∗ ← exp{−C εn
2 }v

∗.
A: Update (xl, vl)← (x∗, v∗) by the geodesic flow for time step εn

2 .
end for
(x(n+1), v(n+1))← (xL, vL). No M-H test.

end for
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Stochastic Gradient Geodesic MCMC Methods Simulation with 2nd-order Geodesic Integrators

Simulation with 2nd-order Geodesic Integrators

Algorithm 2 Sampling procedure of gSGNHT (for scalar C)

Randomly initialize x(0) ∈ Ξ(M).
Sample v∗ ∼ N (0, I) and project v(0) ← Λ(x(0))v∗. ξ(0) ← C.
for n = 1, 2, . . . , do

Sample a subset S for ∇xŨH(x). (x0, v0, ξ0)← (x(n−1), v(n−1), ξ(n−1)).
for l = 1, 2, . . . , L do
A: Update (x∗, v∗)← (xl−1, vl−1) by the geodesic flow for time step εn

2 ,
ξ∗ ← ξl−1 + ( 1

mv
>
l−1vl−1 − 1) εn2 .

B: v∗ ← exp{−ξ∗ εn2 }v
∗.

O: v∗ ← v∗ + Λ(x∗) ·
[
−∇xŨH(x∗)εn+N

(
0, (2C−εnV (x∗))εn

)]
.

B: v∗ ← exp{−ξ∗ εn2 }v
∗.

A: Update (xl, vl)← (x∗, v∗) by the geodesic flow for time step εn
2 ,

ξl ← ξ∗ + ( 1
mv
∗>v∗ − 1) εn2 .

end for
(x(n), v(n), ξ(n))← (xL, vL, ξL). No M-H test.

end for
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Application to Spherical Admixture Model Description of SAM

Description of SAM

Spherical Admixture Model (SAM)
([14]) is a topic model for modeling
spherical/directional data, such as
tf-idf feature for text data.

         
 
                            𝐷 

 
 
            𝐾 

𝑚, 𝜅0 𝜅 𝜇 

𝛽𝑘 𝜃𝑑 𝑣𝑑 

𝛼 

𝜎 

Figure: An illustration of SAM model structure.
The generating process:

Draw µ ∼ vMF(µ|m,κ0);
For k = 1, . . . ,K, draw topic βk ∼ vMF(βk|µ, σ);
For d = 1, . . . , D, draw θd ∼ Dir(θd|α) and vd ∼ vMF(vd|v̄(β, θd), κ),

where v̄(β, θd) ,
βθd
‖βθd‖

and vMF(x|µ, κ) = cd(κ) exp{κµ>x} is the p.d.f. (w.r.t.
the Hausdorff measure) of the von Mises-Fisher distribution, a unimodal
distribution on hyperspheres.

m,µ, βk ∈ SV−1 where V is the vocabulary size, and θd lies on the simplex.

µ can be collapsed so we know the exact form of π(v, β, θ), hence the joint
posterior π(β, θ|v) up to a constant multiplier.

Chang Liu, Jun Zhu and Yang Song (THU) Stochastic Gradient Geodesic MCMC Methods 27 / 39



Application to Spherical Admixture Model Posterior Sampling for SAM

Posterior Sampling for SAM

The task: sample from π(β|v), which is entirely unknown.
For SGGMC/gSGNHT, only ∇βU(β) , −∇β log π(β|v) is needed,
which can be reformed in the way provided by ([8]):

∇β log π(β|v) =
1

π(β|v)
∇β
∫
π(β, θ|v)dθ

=

∫
π(β, θ|v)

π(β|v)

∇βπ(β, θ|v)

π(β, θ|v)
dθ = Eπ(θ|β,v) [∇β log π(β, θ|v)] . (13)

The expectation can be estimated by samples {θ(n)}Nn=1 from
π(θ|β, v), which can be drawn using GMC with known π(θ|β, v) up
to a constant multiplier.
For the computationally cheaper stochastic gradient, we randomly
select S documents from the total D and express the selected
documents by indices {d(s)}Ss=1. Finally,

∇βŨ(β) ≈∇β log cV (‖m̄(β)‖)− κ D

NS

N∑
n=1

S∑
s=1

v>d(s)v̄(β, θ
(n)
d(s)). (14)
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Application to Spherical Admixture Model Posterior Sampling for SAM

Posterior Sampling for SAM

Algorithm 3 sampling inference for SAM using SGGMC/gSGNHT

for m = 1, 2, . . . do
Sample a subset {d(s)}Ss=1 from whole training data.
for s = 1, 2, . . . , S do

Sample N times from π(θd(s)|β(m−1), vd(s)) using GMC to get {θ(n)d(s)}
N
n=1.

end for
Sample once from π(β|v) using SGGMC/gSGNHT to get β(m), with stochastic
gradient computed by Eqn. (14).

end for
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Experiments Toy Experiment

Toy Experiment

Check the
correctness of
SGGMC by a
greenhouse
experiment, where
the stochastic
gradient noise is a
known Gaussian.

  0.5

  1
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  2
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180 0

 

 

empirical distribution
samples from SGGMC

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2
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0.4

0.5

0.6

0.7

φ

π(
φ)

 

 
true
GMC
SGGMC

Figure: Toy experiment results: (left) samples and the empirical
distribution of SGGMC in the embedded space; (right) comparison
of true distribution and empirical distributions in the angle space.Settings:

sample on a circle embedded in R2, with target distribution such that the
potential energy is U(x) = − log

(
exp{κµ>1 x}+ 2 exp{κµ>2 x}

)
+ const., where

µ1 = (cos(π
3

), sin(π
3

)), µ2 = (cos(π
3

),− sin(π
3

)), and κ = 5.
A Gaussian noise N (0, 1000I) is injected into the exact gradient to produce a
stochastic one.
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Experiments Synthetic Experiment

Synthetic Experiment

Settings: Bayesian
posterior estimation for
a mixture model of two
vMF distributions with
equal weights, with
e1 = (1, 0) and
µ , (v1 + v2)/‖v1 + v2‖:

𝜙/4 

𝜙/4 

𝜙/2 

𝑒1 

𝑣1
𝑔

 

𝑣2
𝑔

 

𝜇 𝑔  
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1
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𝑔
 

𝑣2
1
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𝑔
 

𝑣1
2
= 𝜇 𝑔  

𝜙/2 

𝑣2
2

 

Figure: Left plot shows v1, v2, µ for generating
data. Modes of the synthetic data are v(g)1 and µ(g).
Right plot shows the two modes of the posterior:
(v

(1)
1 , v

(1)
2 ) in blue and (v

(2)
1 , v

(2)
2 ) in green.

π(v1) = vMF(v1|e1, κ1), π(v2) = vMF(v2|e1, κ2)

π(xi|v1, v2) ∝ vMF(xi|v1, κx) + vMF(xi|µ, κx)

Data: generated by fixing v1 = v
(g)
1 and v2 = v

(g)
2 , as shown in Figure.

Estimate of the modes of the posterior: under weak prior, it is approximated by
MLE for v1 and v2. Estimate the MLE by matching the modes of x:{

v1 = v
(g)
1

µ = µ(g) ⇒

{
v
(1)
1 = v

(g)
1

v
(1)
2 = v

(g)
2

,

{
v1 = µ(g)

µ = v
(g)
1

⇒

{
v
(2)
1 = µ(g)

v
(2)
2 = v

(2)
2

.
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Figure: True marginal posteriors of v1 (a) and v2 (b) and their empirical distributions by
samples from GMC and SGGMC.
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Figure: Joint posterior of v1 and v2 in gray scale. Left: true distribution; Right: empirical
distribution by samples of SGGMC.
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Real-world Experiment: SAM

Our Methods
SGGMC and gSGNHT, with mini-batch and full-batch of data.
Baselines

VI: variational inference by ([14]).
StoVI: stochastic variational inference, following ([10]).
GMC-bGibbs: blockwise Gibbs sampling that alternatively samples
from π(β|θ, v) and π(θ|β, v) using GMC.
GMC-apprMH: samples β from π(β|v) using GMC with potential
energy estimated by {θ(n)}.
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Real-world Experiment: SAM

Evaluation Approach
The methods are compared for log-perplexity on a held-out test
data set Dtest.

For variational methods, evaluate the point estimate β̂ by
logperp = − 1

|Dtest|
∑
d∈Dtest

log π(vd|β̂).
For sampling methods, evaluate the set of samples {β(m)}Mm=1 by
logperp = − 1

|Dtest|
∑
d∈Dtest

log( 1
M

∑M
m=1 π(vd|β(m))).

To estimate π(vd|β),
π(vd|β) =

∫
π(vd, θd|β)dθd = Eπ(θd|β)[π(vd|β, θd)], where π(vd|β, θd)

is known and samples from π(θd|β) = π(θd) = Dir(α) are easy to
draw.
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Real-world Experiment: SAM

Results on the 20news-different dataset (1,666 training and 1,107 test, 20 topics)
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Figure: The evolution of log-perplexity of all the inference methods along wall time on the
20news-different dataset.
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Real-world Experiment: SAM

Results on the 150K Wikipedia subset (150K training and 1K test, 50 topics)
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Figure: The evolution of log-perplexity of all the inference methods along wall time on the 150K
Wikipedia subset.
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Thanks!
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