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Introduction

Introduction

Bayesian inference: given a dataset D and a Bayesian model p(x,D),
estimate the posterior of the latent variable p(x|D).

Comparison of current inference methods: model-based variational
inference methods (M-VIs), Monte Carlo methods (MCs) and
particle-based variational inference methods (P-VIs)

Methods M-VIs MCs P-VIs

Asymptotic Accuracy No Yes Promising

Approximation Flexibility Limited Unlimited Unlimited

Iteration Effectiveness Yes Weak Strong

Particle Efficiency (do not apply) Weak Strong

Stein Variational Gradient Descent (SVGD) [7]: a P-VI with minimal
assumption and impressive performance.
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Introduction

Introduction

In this work:

Generalize SVGD to the Riemann manifold settings, so that we can:

Purpose 1

Adapt SVGD to tasks on Riemann manifold and introduce the first P-VI to
the Riemannian world.

Purpose 2

Improve SVGD efficiency for usual tasks (ones on Euclidean space) by
exploring information geometry.
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Preliminaries

Stein Variational Gradient Descent (SVGD)

The idea of SVGD:

A deterministic continuous-time dynamics d
dtx(t) = φ(x(t)) on

M = Rm (where φ : Rm → Rm) will induce a continuously evolving
distribution qt on M.

At some instant t, for a fixed dynamics φ, find the decreasing rate of
KL(qt||p), i.e. the Directional Derivative − d

dtKL(qt||p) in the
“direction” of φ.

Find φ that maximizes the directional derivative , i.e. the
Functional Gradient φ∗ (the steepest ascending “direction”).
For close-form solution, φ∗ is chosen from Hm, where H is the
reproducing kernel Hilbert space (RKHS) of some kernel.

Apply the dynamics φ∗ to samples {x(s)}Ss=1 of qt:
{x(s) + εφ∗(x(s))}Ss=1 forms a set of samples of qt+ε.
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Riemannian SVGD

Roadmap

For a general Riemann manifold M,

Any deterministic continuous-time dynamics on M is described by a
vector field X on M. It induces a continuously evolving distribution
on M with density qt (w.r.t. Riemann volume form).

Derive the Directional Derivative − d
dtKL(qt||p) under dynamics X.

Derive the Functional Gradient
X∗ := (max · arg max)‖X‖X=1 − d

dtKL(qt||p).

Moreover, for Purpose 1, express X∗ in the Embedded Space of M
when M has no global coordinate systems (c.s.), e.g. hyperspheres.

Finally, simulate the dynamics X∗ for a small time step ε to update
samples.
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Riemannian SVGD Derivation of the Directional Derivative

Derivation of the Directional Derivative

Let qt be the evolving density under dynamics X.

Lemma (Continuity Equation on Riemann Manifold)

∂qt
∂t

= −div(qtX) = −X[qt]− qtdiv(X).

X[qt]: the action of the vector field X on the smooth function qt. In
any c.s., X[qt] = Xi∂iqt.

div(X): the divergence of vector field X. In any c.s.,
div(X) = ∂i(

√
|G|Xi)/

√
|G|, where G is the matrix expression

under the c.s. of the Riemann metric of M.

Theorem (Directional Derivative)
Let p be a fixed distribution. Then the directional derivative is

− d

dt
KL(qt||p)=Eqt [div(pX)/p]=Eqt

[
X[log p]+div(X)

]
.
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

The task now:

X∗ := (max · arg max)X∈X,‖X‖X=1 J (X) := Eq
[
X[log p] + div(X)

]
,

where X is some subspace of the space of vector fields on M, such that
the requirements are met:

Requirements on X∗, thus on X

R1: X∗ is a valid vector field on M;

R2: X∗ is coordinate invariant;

R3: X∗ can be expressed in closed form, where q appears only in
terms of expectation.
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

R1: X∗ is a valid vector field on M.

Why needed: deductions are based on valid vector fields.

Note: non-trivial to guarantee!

Example (Vector fields on hyperspheres)

Vector fields on an even-dimensional hypersphere must have one
zero-vector-valued point (critical point) due to the hairy ball theorem ([1],
Theorem 8.5.13). The choice in SVGD X = Hm cannot guarantee R1.
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

R2: X∗ is coordinate invariant.

Concept: the expression of an object on M in any c.s. is the same.
E.g. vector field, gradient and divergence.

Why needed: necessary to avoid ambiguity or arbitrariness of the
solution. The vector field X∗ should be independent of the choice of
c.s. in which it is expressed.

Note: the choice in SVGD X = Hm cannot guarantee R2.

R3: X∗ can be expressed in closed form, where q appears only in terms of
expectation.

Why needed: for tractable implementation, and for avoiding making
restrictive assumptions on q.
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

Our Solution

X = {grad f |f ∈ H}, where H is the RKHS of some kernel.

grad f is the gradient of the smooth function f . In any c.s.,
(grad f)j = gij∂if , where gij is the entry of G−1 under the c.s.

Theorem

For Gaussian RKHS, X is isometrically isomorphic to H, thus it is a
Hilbert space.

Our solution guarantees all the requirements:

The gradient is a well-defined object on M and it is guaranteed to be
a valid vector field and coordinate invariant (see paper for detailed
interpretation).

Close-form solution can be derived (see next).
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

The close-form solution:

Theorem (Functional Gradient)

X∗′ = grad′ f∗′, f∗′ = Eq
[
(gradK)[log p] + ∆K

]
,

where notations with prime “ ′ ” take x′ as argument while others take x
and K takes both, and ∆f := div(grad f). In any c.s.,

X∗′
i

= g′ij∂′jEq
[(
gab∂a log(p

√
|G|) + ∂ag

ab
)
∂bK + gab∂a∂bK

]
.
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

Purpose 2

Improve efficiency for the usual inference tasks on Euclidean space Rm.

Apply the idea of information geometry [3, 2]:
for a Bayesian model with prior p(x) and likelihood p(D|x), take
M = {p(·|x) : x ∈ Rm} and treat x as the coordinate of p(·|x). In
this global c.s., G(x) is the Fisher information matrix of p(·|x) (and
typically subtract by the Hessian of log p(x)).

Calculate the tangent vector at each sample using the c.s. expression

X∗′
i

= g′ij∂′jEq
[(
gab∂a log(p

√
|G|) + ∂ag

ab
)
∂bK + gab∂a∂bK

]
,

where the target distribution p = p(x|D) ∝ p(x)p(D|x) and the
expectation is estimated by averaging over samples.

Simulate the dynamics for a small time step ε to update samples:

x(s) ← x(s) + εX∗(x(s)).
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Riemannian SVGD Expression in the Embedded Space

Expression in the Embedded Space

Purpose 1

Enable applicability to inference tasks on non-linear Riemann manifolds.

In the coordinate space of M:

Some manifolds have no global c.s., e.g. hypersphere
Sn−1 := {x ∈ Rn : ‖x‖ = 1} and Stiefel manifold [5]. Cumbersome
switch among local c.s.

G would be singular near the edge of coordinate space.

In the embedded space of M:

M can be expressed globally, and is natural for Sn−1 and Stiefel
manifold.

No singularity problems.

Requires exponential map and density w.r.t. Hausdorff measure,
which are available for Sn−1 and Stiefel manifold.
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Riemannian SVGD Expression in the Embedded Space

Expression in the Embedded Space

Proposition (Functional Gradient in the Embedded Space)

Let m-dim Riemann manifold M isometrically embedded in Rn (with
orthonormal basis {yα}nα=1)) via Ξ :M→ Rn. Let p be the density

w.r.t. the Hausdorff measure on Ξ(M). Then X∗′ = (In−N ′N ′>)∇′f∗′,

f∗′ = Eq
[(
∇ log

(
p
√
|G|
))>(

In −NN>
)

(∇K) +∇>∇K

− tr
(
N>(∇∇>K)N

)
+
(

(M>∇)>(G−1M>)
)

(∇K)
]
,

where In ∈ Rn×n is the identity matrix, ∇ = (∂y1 , . . . , ∂yn)>,

M ∈ Rn×m : Mαi = ∂yα

∂xi
, N ∈ Rn×(n−m) is the set of orthonormal basis

of the orthogonal complement of Ξ∗(TxM) , and tr(·) is the trace.

Simulating the dynamics requires the exponential map Exp of M:

y(s) ← Expy(s)(εX
∗(y(s))).

Expy(v): moves y on Ξ(M) “straightly” along the direction of v.
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Riemannian SVGD Expression in the Embedded Space

Expression in the Embedded Space

Proposition (Functional Gradient for Embedded Hyperspheres)

For Sn−1 isometrically embedded in Rn with orthonormal basis {yα}nα=1,

we have X∗′ = (In − y′y′>)∇′f∗′, where f∗′ =

Eq
[
(∇log p

)>
(∇K) +∇>∇K − y>

(
∇∇>K

)
y − (y>∇log p+ n− 1)y>∇K

]
.

Exponential map on Sn−1:

Expy(v) = y cos(‖v‖) + (v/‖v‖) sin(‖v‖).
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Experiments Bayesian Logistic Regression

BLR: for Purpose 2

Model: Bayesian Logistic Regression (BLR)
w ∼ N (0, αIm), yd ∼ Bern(σ(w>xd)), where σ(x) = 1/(1 + e−x).

Euclidean task: w ∈ Rm.
Posterior: p(w|{(xd, yd)}), log-density gradient known.
Riemann metric tensor G: FisherInfo−Hessian, known in close form.

Kernel: Gaussian kernel in the coordinate space.

Baselines: vanilla SVGD.

Evaluation: averaged test accuracy.
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Experiments Bayesian Logistic Regression

BLR: for Purpose 2

Results:
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(a) On Splice19 dataset
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(b) On Covertype dataset

Figure: Test accuracy along iteration for BLR. Both methods are run 20 times on Splice19 and

10 times on Covertype. Each run on Covertype uses a random train(80%)-test(20%) split as

in [7].
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Experiments Spherical Admixture Model

SAM: for Purpose 1

Model: Spherical Admixture Model (SAM) [8]
Observed var.: tf-idf representation of documents: vd ∈ SV−1.
Latent var.: spherical topics: βt ∈ SV−1.

Non-linear Riemann manifold task: β ∈ (SV−1)T .
Posterior: p(β|v) (w.r.t. the Hausdorff measure), log-density gradient
can be estimated [6].

Kernel: von-Mises Fisher (vMF) kernel K(y, y′) = exp(κy>y′), the
restriction of Gaussian kernel in Rn on Sn−1.
Baselines:

Variational Inference (VI) [8]: the vanilla inference method of SAM.
Geodesic Monte Carlo (GMC) [4]: MCMC for RM in the embed. sp.
Stochastic Gradient GMC (SGGMC) [6]: SG-MCMC for RM in the
embeded space. (-b: mini-batch grad. est. -f: full-batch grad. est.)
For MCMCs, -seq: samples from one chain. -par: newest samples from
multiple chains.

Evaluation: log-perplexity (negative log-likelihood of test dataset
under the trained model) [6].
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Experiments Spherical Admixture Model

SAM: for Purpose 1

Results:
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(a) Results with 100 particles
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(b) Results at 200 epochs

Figure: Results on the SAM inference task on 20News-different dataset, in log-perplexity. We

run SGGMCf for full batch and SGGMCb for a mini-batch size of 50.
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Thank you!
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