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Introduction

Introduction

@ Bayesian inference: given a dataset D and a Bayesian model p(x, D),
estimate the posterior of the latent variable p(x|D).

@ Comparison of current inference methods: model-based variational
inference methods (M-VIs), Monte Carlo methods (MCs) and
particle-based variational inference methods (P-Vls)

Methods M-Vls MCs P-Vis
Asymptotic Accuracy No Yes Promising
Approximation Flexibility Limited Unlimited  Unlimited

Iteration Effectiveness Yes Weak Strong

Particle Efficiency (do not apply) Weak Strong

Stein Variational Gradient Descent (SVGD) [7]: a P-VI with minimal
assumption and impressive performance.
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Introduction

In this work:

Generalize SVGD to the Riemann manifold settings, so that we can:

Purpose 1

Adapt SVGD to tasks on Riemann manifold and introduce the first P-VI to
the Riemannian world.

v

Purpose 2

Improve SVGD efficiency for usual tasks (ones on Euclidean space) by
exploring information geometry.
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Preliminaries

© Preliminaries
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Stein Variational Gradient Descent (SVGD)

The idea of SVGD:
@ A deterministic continuous-time dynamics %x(t) = ¢(x(t)) on
M =R" (where ¢ : R™ — R™) will induce a continuously evolving
distribution ¢; on M.

@ At some instant ¢, for a fixed dynamics ¢, find the decreasing rate of
KL(q||p), i.e. the Directional Derivative —%KL(thp) in the
“direction” of ¢.

o Find ¢ that maximizes the directional derivative , i.e. the
Functional Gradient ¢* (the steepest ascending “direction”).

For close-form solution, ¢* is chosen from H™, where H is the
reproducing kernel Hilbert space (RKHS) of some kernel.

@ Apply the dynamics ¢* to samples {:1:(5)};,9:1 of ¢
{20) 4 e¢*(x())}5_, forms a set of samples of g,
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Riemannian SVGD

© Riemannian SVGD
@ Derivation of the Directional Derivative
@ Derivation of the Functional Gradient
@ Expression in the Embedded Space
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Roadmap

For a general Riemann manifold M,

@ Any deterministic continuous-time dynamics on M is described by a
vector field X on M. It induces a continuously evolving distribution
on M with density ¢; (w.r.t. Riemann volume form).

@ Derive the Directional Derivative —%KL(thp) under dynamics X.
@ Derive the Functional Gradient
X* 1= (max - arg max)|| x| y=1 — LKL (q[p).

@ Moreover, for Purpose 1, express X* in the Embedded Space of M
when M has no global coordinate systems (c.s.), e.g. hyperspheres.

o Finally, simulate the dynamics X* for a small time step ¢ to update
samples.
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Riemannian SVGD Derivation of the Directional Derivative

Derivation of the Directional Derivative

Let g; be the evolving density under dynamics X.

Lemma (Continuity Equation on Riemann Manifold)

0 . .
% = —div(¢:X) = —X|[q] — @div(X).

@ X|q]|: the action of the vector field X on the smooth function ¢;. In
any cs., X[q¢] = X'0;q;.

e div(X): the divergence of vector field X. In any c.s.,
div(X) = 9;(\/|GIX")//]G|, where G is the matrix expression
under the c.s. of the Riemann metric of M.

Theorem (Directional Derivative)
Let p be a fixed distribution. Then the directional derivative is

— KLl 1) =By v (pX) /p] = X log p] +div(X)].
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

The task now:

X* = (max - arg max) x x| x| =1 J (X) := Eg[X[log p] + div(X)],

where X is some subspace of the space of vector fields on M, such that
the requirements are met:
Requirements on X*, thus on X

@ R1: X™* is a valid vector field on M;

@ R2: X* is coordinate invariant;

@ R3: X* can be expressed in closed form, where ¢q appears only in
terms of expectation.
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

R1: X* is a valid vector field on M.
@ Why needed: deductions are based on valid vector fields.

@ Note: non-trivial to guarantee!

Example (Vector fields on hyperspheres)

Vector fields on an even-dimensional hypersphere must have one
zero-vector-valued point (critical point) due to the hairy ball theorem ([1],
Theorem 8.5.13). The choice in SVGD X = H" cannot guarantee R1.
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

R2: X* is coordinate invariant.

@ Concept: the expression of an object on M in any c.s. is the same.
E.g. vector field, gradient and divergence.

@ Why needed: necessary to avoid ambiguity or arbitrariness of the
solution. The vector field X* should be independent of the choice of
c.s. in which it is expressed.

o Note: the choice in SVGD X = A" cannot guarantee R2.

R3: X™ can be expressed in closed form, where ¢ appears only in terms of
expectation.

@ Why needed: for tractable implementation, and for avoiding making
restrictive assumptions on q.
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

Our Solution

X = {grad f|f € H}, where H is the RKHS of some kernel.

e grad f is the gradient of the smooth function f. In any c.s.,
(grad f)7 = g0, f, where g/ is the entry of G~! under the c.s.

Theorem

For Gaussian RKHS, X is isometrically isomorphic to H, thus it is a
Hilbert space.

Our solution guarantees all the requirements:

@ The gradient is a well-defined object on M and it is guaranteed to be
a valid vector field and coordinate invariant (see paper for detailed
interpretation).
@ Close-form solution can be derived (see next).
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

The close-form solution:
Theorem (Functional Gradient)
X* =grad f*, ¥ = E, [(grad K)[logp] + AK],

where notations with prime “' " take x' as argument while others take x
and K takes both, and Af := div(grad f). In any c.s.,

X = g'ijO;-Eq [(g“baa log(py/|G|) + 9ag™) Op K + gabaaabK}-
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Riemannian SVGD Derivation of the Functional Gradient

Derivation of the Functional Gradient

Purpose 2
Improve efficiency for the usual inference tasks on Euclidean space R™. J

@ Apply the idea of information geometry (3, 2]:
for a Bayesian model with prior p(x) and likelihood p(D|x), take
M = {p(-|z) : x € R™} and treat x as the coordinate of p(:|x). In
this global c.s., G(x) is the Fisher information matrix of p(-|x) (and
typically subtract by the Hessian of log p(x)).

o Calculate the tangent vector at each sample using the c.s. expression

X" = gioE, [(g“baa log(pV/IG]) + 8ag™) O K + gabaaabK] ’

where the target distribution p = p(z|D) x p(z)p(D|z) and the
expectation is estimated by averaging over samples.
@ Simulate the dynamics for a small time step € to update samples:

S S * S
20— 2 4 e X (20)).
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Riemannian SVGD Expression in the Embedded Space

Expression in the Embedded Space

Purpose 1

Enable applicability to inference tasks on non-linear Riemann manifolds. J

In the coordinate space of M:

@ Some manifolds have no global c.s., e.g. hypersphere
S*ti:={z € R": ||z|| = 1} and Stiefel manifold [5]. Cumbersome
switch among local c.s.
@ (G would be singular near the edge of coordinate space.
In the embedded space of M:

@ M can be expressed globally, and is natural for S®~! and Stiefel
manifold.

@ No singularity problems.

@ Requires exponential map and density w.r.t. Hausdorff measure,
which are available for S*~! and Stiefel manifold.
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el
Expression in the Embedded Space

Proposition (Functional Gradient in the Embedded Space)

Let m-dim Riemann manifold M isometrically embedded in R™ (with
orthonormal basis {y*}7_,)) via ZE: M — R". Let p be the density
w.r.t. the Hausdorff measure on 2(M). Then X*' = (I, — N'N'")V'f*',

' =E, [(v log (p |Gy))T (In _ NNT) (VK) + VI VK
~ur(NT(VVTE)N) + (MTV)T (6T M) ) (VE)),

where I, € R"*" is the identity matrix, V = (91, . .. ,Oyn)T,

M e R™™ : M, = %, N e R"*(n=m) js the set of orthonormal basis
of the orthogonal complement of E.(T,M) , and tr(-) is the trace.

@ Simulating the dynamics requires the exponential map Exp of M:
Y Expo) (eX*(y)).
Exp,(v): moves y on (M) "“straightly” along the direction of v.
Riemannian Stein Variational Gradient Descent for Bayesian Inference
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Riemannian SVGD Expression in the Embedded Space

Expression in the Embedded Space

Proposition (Functional Gradient for Embedded Hyperspheres)

For S"~! isometrically embedded in R™ with orthonormal basis {y*
we have X*' = (I, — y’y’T)V’f*', where f*' =

E, [(mog p) (VE)+ V'VK -y (VV'K)y — (y'Viogp +n — 1)yTVK] .

n
a=1"

e Exponential map on S"7!:

Exp, (v) =y cos([[v]]) + (v/[v]]) sin([[v]])-
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@ Experiments
@ Bayesian Logistic Regression
@ Spherical Admixture Model
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el esliorer e
BLR: for Purpose 2

Model: Bayesian Logistic Regression (BLR)
w ~ N(0,al,,), yq ~ Bern(o(w' 24)), where o(x) = 1/(1 + ™).
o Euclidean task: w € R™.
o Posterior: p(w|{(z4,y4)}), log-density gradient known.
e Riemann metric tensor GG: FisherInfo — Hessian, known in close form.

Kernel: Gaussian kernel in the coordinate space.
Baselines: vanilla SVGD.

Evaluation: averaged test accuracy.
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BLR: for Purpose 2

@ Results:
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Figure: Test accuracy along iteration for BLR. Both methods are run 20 times on Splice19 and
10 times on Covertype. Each run on Covertype uses a random train(80%)-test(20%) split as

in [7].
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SAM: for Purpose 1

@ Model: Spherical Admixture Model (SAM) [8]
Observed var.: tf-idf representation of documents: vg € SV 1.
Latent var.: spherical topics: 8, € SV~
o Non-linear Riemann manifold task: 3 € (SV~1)7.
e Posterior: p(B|v) (w.r.t. the Hausdorff measure), log-density gradient
can be estimated [6].
e Kernel: von-Mises Fisher (vMF) kernel K (y,%') = exp(xy'3/), the
restriction of Gaussian kernel in R™ on S"~1.
@ Baselines:
o Variational Inference (VI) [8]: the vanilla inference method of SAM.
e Geodesic Monte Carlo (GMC) [4]: MCMC for RM in the embed. sp.
o Stochastic Gradient GMC (SGGMC) [6]: SG-MCMC for RM in the
embeded space. (-b: mini-batch grad. est. -f: full-batch grad. est.)
e For MCMC s, -seq: samples from one chain. -par: newest samples from
multiple chains.
e Evaluation: log-perplexity (negative log-likelihood of test dataset
under the trained model) [6].

Chang Liu and Jun Zhu (THU) Riemannian Stein Variational Gradient Descent for Bayesian Inference 22 /24



SAM: for Purpose 1

o Results:
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(a) Results with 100 particles

Figure: Results on the SAM inference task on
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(b) Results at 200 epochs
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20News-different dataset, in log-perplexity. We

run SGGMCS for full batch and SGGMCb for a mini-batch size of 50.
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Thank you!
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