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Abstract

We develop Riemannian Stein Variational Gradient Descent
(RSVGD), a Bayesian inference method that generalizes
Stein Variational Gradient Descent (SVGD) to Riemann man-
ifold. The benefits are two-folds: (i) for inference tasks in Eu-
clidean spaces, RSVGD has the advantage over SVGD of uti-
lizing information geometry, and (ii) for inference tasks on
Riemann manifolds, RSVGD brings the unique advantages
of SVGD to the Riemannian world. To appropriately trans-
fer to Riemann manifolds, we conceive novel and non-trivial
techniques for RSVGD, which are required by the intrinsi-
cally different characteristics of general Riemann manifolds
from Euclidean spaces. We also discover Riemannian Stein’s
Identity and Riemannian Kernelized Stein Discrepancy. Ex-
perimental results show the advantages over SVGD of ex-
ploring distribution geometry and the advantages of particle-
efficiency, iteration-effectiveness and approximation flexibil-
ity over other inference methods on Riemann manifolds.

Introduction
Bayesian inference is the central task for learning a Bayesian
model to extract knowledge from data. The task is to es-
timate the posterior distribution of latent variables of the
model given observed data. It has been in the focus of
machine learning for decades, with quite a lot of methods
emerging. Variational inference methods (VIs) aim to ap-
proximate the posterior by a tractable variational distribu-
tion. Traditional VIs typically use a statistical model, usually
a parametric distribution family, as the variational distribu-
tion, and we call them model-based VIs (M-VIs). They cast
the inference problem as an optimization problem, which
can be efficiently solved by various techniques. However,
due to the restricted coverage of the chosen distribution fam-
ily (e.g. the mean-field form), there would be a gap block-
ing the approximation from getting any closer. Monte Carlo
methods (MCs) estimate the posterior by directly drawing
samples from it. Asymptotically accurate as they are, their
performance for finite samples is not guaranteed and usually
take effect slowly, especially for the widely applicable thus
commonly used Markov Chain MCs (MCMCs), due to the
positive autocorrelation of their samples.
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Recently, a set of particle-based VIs (P-VIs) have been
proposed. P-VIs use a certain number of samples, or par-
ticles, to represent the variational distribution, and update
the particles by solving an optimization problem. Similar
to MCs, this non-parametric particle form gives them great
flexibility to reduce the gap of M-VIs, and beyond MCs, the
optimization-based update rule makes them effective in it-
eration: every iteration is guaranteed to make progress. Al-
though there are convergence analyses for some particular
MCMCs from non-stationary to stationary, the principle of a
general MCMC only guarantees that the sampler will remain
in the stationary distribution. Moreover, MCs usually re-
quire a large sample size to take effect, while P-VIs achieve
similar performance with much fewer particles, since their
principle aims at finite sample performance. This particle-
efficiency would save the storage of the inference result, and
reduce the time for tasks afterwards such as test and pre-
diction. Table 1 presents a comparison of the three kinds of
inference methods.

Stein variational gradient descent (SVGD) (Liu and Wang
2016) is an outstanding example of P-VIs. SVGD updates
particles by imposing a continuous-time dynamics on them
that leads the variational distribution to evolve towards the
posterior. Although the dynamics is restricted in a kernel-
related space for tractability, the theory of SVGD makes
no assumption on the variational distribution, indicating the
best flexibility. SVGD has been applied to develop advanced
inference methods (Wang and Liu 2016; Pu et al. 2017) as
well as reinforcement learning (Liu et al. 2017; Haarnoja
et al. 2017). Other instances of P-VIs include normalizing
flows (NF) (Rezende and Mohamed 2015) and particle mir-
ror descent (PMD) (Dai et al. 2016). NF uses a series of
invertible transformations to adjust particles from a simple
tractable distribution to fit the posterior. However, the invert-
ibility requirement restricts its flexibility. PMD adopts the
mirror descent method to formulate an optimization problem
and uses a weighted kernel density estimator for the varia-
tional distribution, which is still a restricting assumption.

Another issue of Bayesian inference is the collaboration
with Riemann manifold. This consideration bears its im-
portance in two ways: (i) the posterior of some models it-
self is a distribution on a given Riemann manifold, e.g. the
spherical admixture model (SAM) (Reisinger et al. 2010)
has its posterior on hyperspheres; (ii) latent variables in



Table 1: A comparison of three kinds of inference methods.
Methods M-VIs MCs P-VIs

Asymptotic
Accuracy No Yes Promising

Approximation
Flexibility Limited Unlimited Unlimited

Iteration-
Effectiveness Yes Weak Strong

Particle-
Efficiency

(do not
apply) Weak Strong

a Bayesian model is a natural coordinate system (c.s.) of
the Riemann manifold of likelihood distribution, so we can
also conduct Bayesian inference on the distribution mani-
fold with improved efficiency with the help of information
geometry (Amari and Nagaoka 2007; Amari 2016). Much
progress has been made recently for both Riemannian con-
siderations. In the spirit of (i), Bonnabel (2013) and Zhang,
Reddi, and Sra (2016) develop scalable and stable optimiza-
tion methods on Riemann manifold to enhance inference
for M-VIs, and Brubaker, Salzmann, and Urtasun (2012),
Byrne and Girolami (2013) and Liu, Zhu, and Song (2016)
develop efficient and scalable MCMCs on Riemann mani-
fold. In the spirit of (ii), Hoffman et al. (2013) use natu-
ral gradient for M-VI, Girolami and Calderhead (2011) and
Ma, Chen, and Fox (2015) develop efficient MCMCs with
Riemann structure, and Li et al. (2016) apply the Rieman-
nian MCMCs to the inference of Bayesian neural network.
Little work has been done to enhance P-VIs with Riemann
structure. Gemici, Rezende, and Mohamed (2016) attempt to
generalize NF to Riemann manifold, but their method can-
not be used for manifolds with no global c.s., such as hy-
persphere. Although the method can be implemented in the
almost-global c.s., unbounded distortion near the boundary
of the c.s. would unavoidably occur, which would cause nu-
merical instability.

In this work, we develop Riemannian Stein Variational
Gradient Descent (RSVGD), the extension of SVGD to Rie-
mann manifold. Our method can be applied for both ap-
proximating the posterior on Riemann manifold (i), and effi-
cient inference by exploring the Riemann structure of dis-
tributions (ii). RSVGD inherits the significant advantages
of SVGD, bringing the benefits to the field of inference on
Riemann manifold, such as particle-efficiency and zero vari-
ational assumption. Technically, it is highly non-trivial to
extent the idea to Riemann manifold, as many subtle prop-
erties of Riemann manifold must be carefully considered,
which may lead to completely different treatment. We first
review SVGD as an evolution under a dynamics of a flow
and generalize the deduction to Riemann manifold. Then we
solve for the optimal dynamics by a novel method, where
the treatment of SVGD fails due to the intrinsically differ-
ent properties of general Riemann manifold from Euclidean
space. The expression in the embedded space is also derived

for application to manifolds with no global c.s. like hyper-
spheres, which does not require choosing a c.s. and intro-
duce no numerical problems. As side products, we also de-
velop Riemannian Stein’s identity and Riemannian kernel-
ized Stein discrepancy, as an extension of the corresponding
concepts. Finally, we apply RSVGD to the troublesome in-
ference task of SAM, with its unique advantages validated
in experiments.

Preliminaries
Riemann Manifolds
We briefly introduce basic concepts of Riemann manifold.
For more details please refer to common textbooks e.g.
Do Carmo (1992); Abraham, Marsden, and Ratiu (2012).

Basics Denote M an m-dimensional Riemann manifold.
By definition at every point A ∈ M there exists a local
coordinate system (c.s.) (U,Φ), where U ⊂ M is open
and contains A, and Φ : U → Rm a homeomorphism be-
tween U and Φ(U). Denote C∞A and C∞(M) as the set of
functions M → R that are smooth around A and all over
M, respectively. A tangent vector v at A is a linear func-
tional C∞A → R that satisfies v[(fg)(·)] = f(A)v[g(·)] +
g(A)v[f(·)],∀f, g ∈ C∞A . Intuitively v[f ] is the directional
derivative of f at A along the direction of v. All such v
forms an m-dimensional linear space TAM, called the tan-
gent space at A. Its natural basis {∂i}mi=1 under (U,Φ) is
defined as ∂i(A)[f ] := ∂(f◦Φ−1)

∂xi (x1, . . . , xm)|Φ(A) (also
denoted as ∂if |A). We can then express v in component:
v = vi∂i, where we adopt Einstein’s convention that du-
plicated subscript and superscript are summed out. A vector
field X on M specifies at every A ∈ M a tangent vec-
tor X(A) ∈ TAM smoothly with respect to (w.r.t.) A. De-
note T (M) as the set of all such X . A Riemann structure
is equipped to M if ∀A ∈ M, TAM is endowed with an
inner product gA(·, ·) (and gA is smooth in A). In (U,Φ),
for u = ui∂i, v = vj∂j , gA(u, v) = gij(A)uivj , where
gij(A) = gA(∂i, ∂j).

An object called Riemann volume form µg can be used
to define a measure on M via integral: the measure of a
compact region U ⊂ M is defined as

∫
U
µg . Thus for any

probability distribution absolutely continuous w.r.t. µg , we
can define its probability density function (p.d.f.) p w.r.t. µg:
Prob(U) =

∫
U
pµg . In the sequel, we require distributions

such that their p.d.f. are smooth functions on M, and we
would say “distribution with p.d.f. p” as “distribution p”.

Flows, Dynamics and Evolving Distributions These
concepts constitute the fundamental idea of SVGD and our
RSVGD. The notion of flow arises from the following fact:
for a vector field X and a fixed point A ∈ M, there exist
a subset U ⊂ M containing A, and a one-parameter trans-
formation F(·)(·) : (−δ, δ) × U → M where δ ∈ R, such
that F0(·) is the identity map on U , and for B ∈ U and t0 ∈
(−δ, δ), d

dtf(Ft(B))|t=t0 = X(Ft0(B))[f ],∀f ∈ C∞Ft0 (B)

(Do Carmo, 1992, Page 28). We call F(·)(·) the local flow
of X around A. Under some condition, e.g. X has compact



support, there exists a local flow that is global (i.e. U =M),
which is called the flow of X .

We refer a dynamics here as a rule governing the mo-
tion on M over time t. Specifically, a dynamics gives the
position A(t) at any future time for any given initial posi-
tion A(0). If t ∈ R and A(t) is smooth for all A(0) ∈ M,
we call it a continuous-time dynamics. Obviously, a flow
can be used to define a continuous-time dynamics: A(t) =
Ft(A0), A(0) = A0. Due to the correspondence between a
vector field and a flow, we can also define a dynamics by a
vector field X , and denote it as dA

dt = X . Thus we would
say “the dynamics defined by the flow of X” as “dynamics
X” in the following.

Let a random variable (r.v.) obeying some distribution p
move under dynamics X from time 0 to t, which acts as a
transformation on the r.v. Then the distribution of the trans-
formed r.v. also evolves along time t, and we denote it as
pt, and call it an evolving distribution under dynamics X .
Suppose there is a set of particles {A(i)}Ni=1 that distributes
as p. Let each particle move individually under dynamics X
for time t, then the new set of particles distributes as pt.

Reynolds Transport Theorem
Reynolds transport theorem helps us to relate an evolving
distribution to the corresponding dynamics. It is a general-
ization of the rule of differentiation under integral, and is the
foundation of fluid mechanics. Let X ∈ T (M) and F(·)(·)
be its flow. For smooth f(·)(·) : R ×M → R and any open
subset U ⊂M, the theorem states that

d

dt

∫
Ft(U)

ftµg =

∫
Ft(U)

(
∂ft
∂t

+ div(ftX)

)
µg,

where div : T (M) → C∞(M) is the divergence of a vec-
tor field. In any local c.s., div(X) = ∂i(

√
|G|Xi)/

√
|G|,

where G, commonly called Riemann metric tensor, is the
m×m matrix comprised of gij in that c.s., and |G| is its de-
terminant. More details can be found in e.g. (Romano, 2007,
Page 164); (Frankel, 2011, Page 142); (Abraham, Marsden,
and Ratiu, 2012, Page 469).

Stein Variational Gradient Descent (SVGD)
We review SVGD (Liu and Wang 2016) from a perspec-
tive inspiring our generalization work to Riemann manifold.
SVGD is a particle-based variational inference method. It
updates particles by applying an appropriate dynamics on
them so that the distribution of the particles, an evolving dis-
tribution, approaches (in the KL-divergence sense) the target
distribution. Note that in this case the manifold is the most
common Euclidean space M = Rm. Denote the evolving
distribution of the particles under dynamics X as qt, and let
p be the target distribution. The first key result of SVGD is

− d

dt
KL(qt||p) = Eqt [X>∇ log p+∇>X], (1)

which measures the rate of qt to approach p. As our desider-
ata is to maximize−KL(qt||p), a desirable dynamics should
maximize this approaching rate. This is analogous to the
process of finding gradient when we want to maximize a

function f : ∇f(x) = α0v0, (α0, v0) = max‖v‖=1 f
′
v(x),

where f ′v(x) is the directional derivative along direction v.
Similarly, we call − d

dtKL(qt||p) the directional deriva-
tive along vector field X , and (Liu and Wang 2016) claims
that the direction and magnitude of functional gradient of
−KL(qt||p) coincides with the maximizer and maximum of
the directional derivative, and the dynamics of the functional
gradient (itself a vector field) is the desired one. Simulat-
ing this dynamics and repeating the procedure updates the
particles to be more and more representative for the target
distribution.

The above result reveals the relation between the direc-
tional derivative and dynamics X . To find the functional
gradient, we get the next task of solving the maximization
problem. Note that in Euclidean case, the tangent space at
any point is isometrically isomorphic to Rm, soX can be de-
scribed asm smooth functions on Rm. Liu and Wang (2016)
take X from the product space HmK of the reproducing ker-
nel Hilbert space (RKHS) HK of some smooth kernel K
on Rm. HK is a Hilbert space of some smooth functions on
Rm.Its key property is that for anyA ∈ Rm,K(A, ·) ∈ HK ,
and 〈f(·),K(A, ·)〉HK = f(A),∀f ∈ HK . InHmK the max-
imization problem can be solved in closed form, which gives
the functional gradient:

X∗(·) = Eqt(A)[K(A, ·)∇ log p(A) +∇K(A, ·)]. (2)

Note that the sample distribution qt appears only in the form
of expectation, which can be estimated by merely samples
from qt. This releases the assumption on the explicit form
of qt thus gives it great flexibility. It is a benefit of using
KL-divergence to measure the difference between two dis-
tributions.

Riemannian SVGD
We now present Riemannian Stein Variational Gradient De-
scent (RSVGD), which has many non-trivial considerations
beyond SVGD and requires novel treatments. We first de-
rive the Riemannian counterpart of the directional deriva-
tive, then conceive a novel technique to find the functional
gradient, in which case the SVGD technique fails. Finally
we express RSVGD in the embedded space of the manifold
and give an instance for hyperspheres, which is directly used
for our application.

Derivation of the Directional Derivative
Now M is a general Riemann manifold. We first derive a
useful tool for deriving the directional derivative.
Lemma 1 (Continuity Equation on Riemann Manifold). Let
pt be the evolving distribution under dynamics X , where
X ∈ T (M). Then

∂pt
∂t

= −div(ptX) = −X[pt]− ptdiv(X). (3)

See Appendix1 A1 for derivation, which involves
Reynolds transport theorem.

1Appendix available at http://ml.cs.tsinghua.edu.
cn/˜changliu/rsvgd/Liu-Zhu-appendix.pdf



We now present our first key result, the directional deriva-
tive of −KL(qt||p)2 w.r.t. vector field X .
Theorem 2 (Directional Derivative). Let qt be the evolving
distribution under dynamics X , and p a fixed distribution.
Then the directional derivative is

− d

dt
KL(qt||p)=Eqt [div(pX)/p]=Eqt

[
X[log p]+div(X)

]
.

See Appendix A3 for proof. Theorem 2 is an extension of
the key result of SVGD Eqn. (1) to general Riemann man-
ifold case. In SVGD terms, we call ApX = X[log p] +
div(X) the generalized Stein’s operator.

Appendix A4 further discusses in detail the correspond-
ing condition for Stein’s identity to hold in this case. Stein’s
identity refers to the equality − d

dtKL(qt||p)
∣∣
t=t0

= 0 for
any t0 such that qt0 = p. Stein class is the set of X that
makes Stein’s identity hold. Stein’s identity indicates that
when qt reaches its optimal configuration p, the directional
derivative along any direction X in the Stein class is zero, in
analogy to the well-known zero gradient condition in opti-
mization. These concepts play an important rule when using
the functional gradient to measure the distance between two
distributions, i.e. the Stein discrepancy (Liu, Lee, and Jordan
2016).

Derivation of the Functional Gradient
Now that we have the directional derivative expressed in
terms of X , we get the maximization problem to find the
functional gradient:

max
X∈X,‖X‖X=1

J (X) := Eq
[
X[log p] + div(X)

]
, (4)

where we omit the subscript of qt since it is fixed when
optimizing w.r.t. X . Ideally X should be T (M), but for
a tractable solution we may restrict X to some subset of
T (M) which is at least a normed space. Once we get the
maximizer of J (X), denoted byXo, we have the functional
gradient X∗ = J (Xo)Xo ∈ T (M).

Requirements Before we choose an appropriate X, we
first list three requirements on a reasonable X∗ (or equiva-
lently onXo since they differ only in scale). The first two re-
quirements arise from special properties of general Riemann
manifolds, which are so different from Euclidean spaces that
make SVGD technique fail.

• R1: X∗ is a valid vector field onM;
• R2: X∗ is coordinate invariant;
• R3: X∗ can be expressed in closed form, where q appears

only in terms of expectation.

We require R1 since all the above deductions are based
on vector fields. In the Euclidean case, any set of m smooth
functions (f1, . . . , fm) satisfies R1. But in general Riemann
manifold, it is not enough that all the m components of a
vector field is smooth in any coordinate system (c.s.). For
example, due to the hairy ball theorem (Abraham, Marsden,

2Appendix A2 presents the well-definedness of the KL-
divergence on Riemann manifoldM.

and Ratiu, 2012, Theorem 8.5.13), vector fields on an even-
dimensional hypersphere must have one zero-vector-valued
point (critical point), which goes beyond the above condi-
tion. This disables the idea to use the SVGD technique in
the coordinate space of a manifold.

R2 is required to avoid ambiguity or arbitrariness of the
solution. Coordinate invariance is a key concept in the area
of differential manifold. By definition the most basic way
to access a general manifold is via c.s., so we can define an
object on the manifold by its expression in c.s. If the form
of the expression in any c.s. is the same, or equivalently the
expression in a certain form refers to the same object in any
c.s., we say that the form of the object is coordinate invari-
ant. For intersecting c.s. (U,Φ) and (V,Ψ), if the expression
in each c.s. with a same form gives different results, then
the object is ambiguous on U ∩ V . One may argue that it
is possible to use one certain c.s. to uniquely define the ob-
ject, whatever the form in that c.s., but firstly for manifolds
without global c.s., e.g. hyperspheres, we cannot define an
object globally on the manifold in this manner, and secondly
for manifolds that have global c.s., the choice of the certain
c.s. may be arbitrary, since all the c.s. are equivalent to each
other: there is no objective reason for choosing one specific
c.s. other than other c.s.

Expression grad f = gij∂if∂j is coordinate invariant,
while ∇f =

∑
i ∂if∂i is not. Suppose the above two ex-

pressions are written in c.s. (U, {xi}mi=1). Let (V, {ya}ma=1)

be another c.s. with ∂̃a and g̃ab the corresponding ob-
jects on it. On U ∩ V , grad f = g̃ab∂̃af∂̃b, but ∇f =

(
∑
i
∂ya

∂xi
∂yb

∂xi )∂̃af∂̃b while we expect
∑
a ∂̃af∂̃a, which do

not match for general c.s. Consequently, the functional gra-
dient of SVGD Eqn. (2) is not coordinate invariant. Again,
the SVGD technique does not meet our demand here.

R3 cuts off the computational burden for optimizing
w.r.t. X , and releases the assumption on the form of q so
as to adopt the benefit of SVGD of flexibility.

Before presenting our solution, we would emphasize the
difficulty by listing some possible attempts that actually fail.
First note that X is a subspace of T (M), which is a linear
space on both R and C∞(M). But in either case T (M) is
infinite dimensional and it is intractable to express vector
fields in it. Secondly, as the treatment of SVGD, one may
consider expressing vector fields component-wise. This idea
specifies a tangent vector at each point, thus would easily
violate R1 and R2, due to the intrinsically different charac-
teristic of general Riemann manifolds from Euclidean space:
tangent spaces at different points are not the same. R1 and
R2 focus on global properties, one has to link tangent spaces
at different points. Taking a c.s. could uniformly express the
tangent vectors on the c.s., but this is not enough as stated
above. One may also consider transforming tangent vectors
at different points to one certain pivot point by parallel trans-
port, but the arbitrariness of the pivot point would dissatisfy
R2. The third possibility is to view a vector field as a map
fromM to TM, the tangent bundle ofM, but TM is gen-
erally only a manifold but not a linear space, so we cannot
apply theories of learning vector-valued functions (e.g. Mic-
chelli and Pontil (2005)).



Solution We first present our solution, then check the
above requirements. Note that theories of kernel and re-
producing kernel Hilbert space (RKHS) (see e.g. Steinwart
and Christmann (2008), Chapter 4) also apply to manifold
case. Let K : M ×M → R be a smooth kernel on M
and HK its RKHS. We require K such that zero function
is the only constant function in HK . Such kernels include
the commonly used Gaussian kernel (Steinwart and Christ-
mann, 2008, Corollary 4.44).

We choose X = {grad f |f ∈ HK}, where grad :
C∞(M) → T (M) is the gradient of a smooth function,
which is a valid vector field. In any c.s., grad f = gij∂if∂j ,
where gij is the (i, j)-th entry of G−1. The following result
indicates that X can be made into an inner product space.
Lemma 3. With a proper inner product, X is isometrically
isomorphic toHK , thus a Hilbert space.

Proof. Define ι : HK → X, f 7→ grad f , which is linear:
∀α ∈ R, f, h ∈ HK , ι(αf + h) = αgrad f + gradh =
αι(f) + ι(h). For any f, h ∈ HK that satisfy ι(f) = ι(h),
we have grad (f−h) = 0, f−h = constHK = 0HK , where
the last equality holds for our requirement on K. So f = h
thus ι is injective. By definition of X, ι is surjective, so it is
an isomorphism between X andHK .

Define 〈·, ·〉X : 〈X,Y 〉X = 〈ι−1(X), ι−1(Y )〉HK ,
∀X,Y ∈ X. By the linearity of ι and that 〈·, ·〉HK is an
inner product, one can easily verify that 〈·, ·〉X is an inner
product on X, and that ι is an isometric isomorphism.

Next we present our second key result, that the objective
J (X) can be cast as an inner product in X.
Theorem 4. For (X, 〈·, ·〉X) defined above and J the objec-
tive in Eqn. (4), we have J (X) = 〈X, X̂〉X, where

X̂ = grad f̂ ,

f̂(·) = Eq(A)

[(
gradK(A, ·)

)
[log p(A)] + ∆K(A, ·)

]
, (5)

and ∆f := div(grad f) is the Beltrami-Laplace operator.

Proof (sketch). Use f = ι−1(X) ∈ HK to express the vec-
tor field X = grad f . Expand J in some c.s., then cast par-
tial derivatives into the form of inner product in HK based
on the results of Zhou (2008). Rearranging terms by the lin-
earity of inner product and expectation, J can be written as
an inner product in HK , thus an inner product in X due to
their isomorphism. See Appendix A5 for details.

In the form of an inner product, the maximization prob-
lem (4) solves as: Xo = X̂/‖X̂‖X. Then the functional gra-
dient is X∗ = J (Xo)Xo = 〈X̂,X̂〉X

‖X̂‖X
· X̂
‖X̂‖X

= X̂ .

Corollary 5. (Functional Gradient) For (X, 〈·, ·〉X) taken
as above, the functional gradient is X∗ = X̂ .

Now we check our solution for the three requirements.
Since grad , div, ∆, expectation, and the action of tangent
vector on smooth function v[f ] are all coordinate invariant
objects, f̂ is coordinate invariant thus a valid smooth func-
tion onM. So its gradient X̂ is a valid vector field (R1) and
also coordinate invariant (R2). R3 is obvious from Eqn. (5).

As a bonus, we present the optimal value of the objective:

J (X̂) =EqEq′
[(

grad′ log p′
)[

(grad log p)[K]
]

+ ∆′∆K

+ (grad′ log p′)[∆K] + (grad log p)[∆′K]
]
,

whereK = K(A,A′), and notations with prime “ ′ ” takeA′
as argument and others take A. We call it Riemannian Ker-
nelized Stein Discrepancy (RKSD) between distributions
q and p, a generalization of Kernelized Stein Discrepancy
(Liu, Lee, and Jordan 2016; Chwialkowski, Strathmann, and
Gretton 2016).

After deriving the functional gradient X∗ = X̂ , we can
simulate its dynamics in any c.s. (denoted as (U, {xi}mi=1))
by xi(t + ε) = xi(t) + εX̂i(x(t)) for each component i,
which is a 1st-order approximation of the flow of X̂ , where

X̂i(A′) = g′ij∂′jEq
[(
gab∂a log(p

√
|G|) + ∂ag

ab
)
∂bK

+ gab∂a∂bK
]
. (6)

This is the update rule of particles for inference tasks on
Euclidean space, where the expectation is estimated by av-
eraging over current particles, and the Riemann metric ten-
sor gij is taken as the subtraction of the Fisher information
of likelihood with the Hessian of prior p.d.f., as adopted by
Girolami and Calderhead (2011). Note that gij is the entry
of the inverse matrix.

Expression in the Embedded Space
From the above discussion, we can simulate the optimal
dynamics in c.s. But it is not always the most convenient
approach. For some manifolds, like hyperspheres Sn−1 :=
{x ∈ Rn|‖x‖2 = 1} or Stiefel manifold Mm,n := {M ∈
Rm×n|M>M = Im} (James 1976), on one hand, they have
no global c.s. so we have to change c.s. constantly while
simulating, and we have to compute gij , |G| and ∂iK in
each c.s. It is even hard to find a c.s. of a Stiefel manifold.
On the other hand, such manifolds are defined as a subset of
some Euclidean space, which is a natural embedded space.
This motivates us to express the dynamics of the functional
gradient in the embedded space and simulate in it.

Formally, an embedding of a manifold M is a smooth
injection Ξ : M → Rn for some n ≥ m. For a Riemann
manifold, Ξ is isometric if gij =

∑n
α=1

∂yα

∂xi
∂yα

∂xj in any c.s.
(U,Φ), where ∂yα

∂xi is for y = ξ(x) with ξ := Ξ ◦ Φ−1. The
Hausdorff measure on Ξ(M) ⊂ Rn induces a measure on
M, w.r.t. which we have p.d.f. pH . We recognize that for
isometric embedding, p = pH .

Since Ξ is injective, Ξ−1 : Ξ(M) → M can be well-
defined, so can ξ−1 for any c.s. The following proposition
gives a general expression of the functional gradient in an
isometrically embedded space.

Proposition 6. Let all the symbols take argument in the
isometrically embedded space Rn (with orthonormal ba-
sis {yα}nα=1)) via composed with Ξ−1 or ξ−1. We have



X̂ ′ = (In −N ′N ′>)∇′f̂ ′,

f̂ ′ = Eq
[(
∇ log

(
p
√
|G|
))>(

In −NN>
)

(∇K)

+∇>∇K − tr
(
N>(∇∇>K)N

)
+
(

(M>∇)>(G−1M>)
)

(∇K)
]
, (7)

where In ∈ Rn×n is the identity matrix, ∇ =

(∂y1 , . . . , ∂yn)>, M ∈ Rn×m : Mαi = ∂yα

∂xi , N(A) ∈
Rn×(n−m) is the set of orthonormal basis of the orthogo-
nal complement of Ξ∗(TAM) (the Ξ-pushed-forward tan-
gent space, an m-dimensional linear subspace of Rn), and
tr(·) is the trace of a matrix.

See Appendix A6.1 for derivation. Note that N does not
depend on the choice of c.s. ofM while M and G do, but
the final result does not. Simulating the dynamics is quite
different from the coordinate space case due to the constraint
of Ξ(M). A 1st-order approximation of the flow is

y(t+ ε) = Expy(t)

(
εX̂(y(t))

)
,

where ExpA is the exponential map at A ∈M, which maps
v ∈ TAM to the end point of moving A along the geodesic
determined by v for unit time (parameter of the geodesic).
In Rn, A is moved along the straight line in the direction of
v for length ‖v‖, and in Sn−1, A is moved along the great
circle (orthodrome) tangent to v at A for length ‖v‖.

Instantiation for Hyperspheres We demonstrate the
above result with the instance ofM = Sn−1.

Proposition 7. For Sn−1 isometrically embedded in Rn
with orthonormal basis {yα}nα=1, we have X̂ ′ = (In −
y′y′

>
)∇′f̂ ′,

f̂ ′ = Eq
[
(∇ log p

)>
(∇K) +∇>∇K − y>

(
∇∇>K

)
y

− (y>∇ log p+ n− 1)y>∇K
]
. (8)

Note that the form of the expression does not depend on any
c.s. of Sn−1. The exponential map on Sn−1 is given by

Expy(v) = y cos(‖v‖) + (v/‖v‖) sin(‖v‖).

See Appendix A6.2 for more details. Appendix A6.3 further
provides the expression for the product manifold of hyper-
spheres (Sn−1)P , which is the specific manifold on which
the inference task of Spherical Admixture Model is defined.

Experiments
We find the naı̈ve mini-batch implementation of RSVGD
does not perform well in experiments, which may require
further investigation on the impact of gradient noise on the
dynamics. So we only focus on the full-batch performance
of RSVGD in experiments3.

3Codes and data available at http://ml.cs.tsinghua.
edu.cn/˜changliu/rsvgd/
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Figure 1: Test accuracy along iteration for BLR. Both meth-
ods are run 20 times on Splice19 and 10 times on Covertype.
Each run on Covertype uses a random train(80%)-test(20%)
split as in (Liu and Wang 2016).

Bayesian Logistic Regression
We test the empirical performance of RSVGD on Euclidean
space (Eqn. 6) by the inference task of Bayesian logistic re-
gression (BLR). BLR generates latent variable from prior
w ∼ N (0, αIm), and for each datum xd, draws its label
from Bernoulli distribution yd ∼ Bern(s(w>xd)), where
s(x) = 1/(1 + e−x). The inference task is to estimate the
posterior p(w|{xd}, {yd}). Note that for this model, as is
shown in Appendix A7, all the quantities involving Riemann
metric tensor G has a closed form, except G−1, which can
be solved by either direct numerical inversion, or an iterative
method over the dataset.
Kernel As stated before, in the Euclidean case we essen-
tially conduct RSVGD on the distribution manifold. To spec-
ify a kernel on it, we note that the Euclidean space of the
latent variable is a global c.s. (Φ,Rm) of the manifold. By
the mapping Φ, any kernel on Rm is a kernel on the mani-
fold (Steinwart and Christmann (2008), Lemma 4.3). In this
sense we choose the Gaussian kernel on Rm. Furthermore,
we implement the kernel for both SVGD and RSVGD as the
summation of several Gaussian kernels with different band-
widths, which is still a valid kernel (Steinwart and Christ-
mann (2008), Lemma 4.5). We find it slightly better than the
median trick of SVGD in our experiments.
Setups We compare RSVGD with SVGD (full-batch) for
test accuracy along iteration. We fix α = 0.01 and use
100 particles for both methods. We use the Splice19 dataset
(1,000 training entries, 60 features), one of the benchmark
datasets compiled by Mika et al. (1999), and the Covertype
dataset (581,012 entries, 54 features) also used by Liu and
Wang (2016). RSVGD updates particles by the aforemen-
tioned 1st-order flow approximation, which is effectively
the vanilla gradient descent, while SVGD uses the recom-
mended AdaGrad with momentum. We also tried gradient
descent for SVGD, with no better outcomes.
Results We see from Fig. 1 that RSVGD makes more ef-
fective updates than SVGD on both datasets, indicating the
benefit of RSVGD to utilize the distribution geometry for
Bayesian inference. Although AdaGrad with momentum,
which SVGD uses, counts for a method for estimating the
geometry empirically (Duchi, Hazan, and Singer 2011), our
method provides a more principled solution, with more pre-
cise results.



Spherical Admixture Model
We investigate the advantages of RSVGD on Riemann man-
ifold (Eqn. 7) by the inference task of Spherical Admixture
Model (SAM) (Reisinger et al. 2010), which is a topic model
for data on hyperspheres, e.g. tf-idf feature of documents.
The model first generates corpus mean µ ∼ vMF(m,κ0)
and topics {βk}Pk=1 : βk ∼ vMF(µ, σ), then for document
d, generates its topic proportion θd ∼ Dir(α) and content
vd ∼ vMF(βθd/‖βθd‖, κ), where vMF is the von Mises-
Fisher distribution (Mardia and Jupp 2000) for random vari-
able on hyperspheres, and Dir is the Dirichlet distribution.

The inference task of SAM is to estimate the posterior of
the topics p(β|v). Note that the topics β = (β1, . . . , βP ) lies
in the product manifold of hyperspheres (Sn−1)P .
Kernel Like the Gaussian kernel in the Euclidean case, we
use the vMF kernel K(y, y′) = exp(κy>y′) on hyper-
spheres. Note that the vMF kernel on Sn−1 is the restric-
tion of the Gaussian kernel on Rn: exp(−κ2 ‖y − y′‖2) =

exp(−κ) exp(κy>y′) for y, y′ ∈ Sn−1, so it is a valid kernel
on Sn−1 (Steinwart and Christmann (2008), Lemma 4.3).
We also recognized that the arcsine kernel K(y, y′) =
arcsin(y>y′) is also a kernel on Sn−1, due to the non-
negative Taylor coefficients of the arcsine function (Stein-
wart and Christmann (2008), Lemma 4.8). But unfortunately
it does not work well in experiments.

For a kernel on (Sn−1)P , we set K(y, y′) =∏P
k=1 exp(κy>(k)y

′
(k)). Again we use the summed kernel

trick for RSVGD.
Setups The manifold constraint isolates the task from most
prevalent inference methods, including SVGD. A mean-
field variational inference method (VI) is proposed by the
original work of SAM. Liu, Zhu, and Song (2016) present
more methods based on advanced Markov chain Monte
Carlo methods (MCMCs) on manifold, including Geodesic
Monte Carlo (GMC) (Byrne and Girolami 2013), and their
proposed Stochastic Gradient Geodesic Monte Carlo (SG-
GMC), a scalable mini-batch method. We implement the two
MCMCs in both the standard sequential (-seq) way, and the
parallel (-par) way: run multiple chains and collect the last
sample on each chain. To apply RSVGD for inference, as
with GMC and SGGMC cases, we adopt the framework of
Liu, Zhu, and Song (2016), which directly provides an esti-
mate of the all-we-need information ∇β log p(β|v). We run
all the methods on the 20News-different dataset (1,666 train-
ing entries, 5,000 features) with default hyperparameters as
the same as (Liu, Zhu, and Song 2016). We use epoch (the
amount of visit to the dataset) instead of iteration since SG-
GMCb is run with mini-batch.
Results Fig. 2(a) shows that RSVGD makes the most
effective progress along epoch, indicating its iteration-
effectiveness. VI converges fast but to a less satisfying state
due to its restrictive variational assumption, while RSVGD,
by the advantage of high approximation flexibility, achieves
a better result comparable to MCMC results. GMC meth-
ods make consistent but limited progress, where 200 epochs
is too short for them. Although SGGMC methods perform
outstandingly in (Liu, Zhu, and Song 2016), they are embar-
rassed here by limited particle size. Both fed on full-batch
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(b) Results at 200 epochs

Figure 2: Results on the SAM inference task on 20News-
different dataset, in log-perplexity. We run SGGMCf for full
batch and SGGMCb for a mini-batch size of 50.

gradient, SGGMCf has a more active dynamics than GMC
thus can explore a broader region, but still not as efficient as
RSVGD. The -seq and -par versions of an MCMC behave
similarly, although -par seems better at early stage since it
has more particles.

Fig. 2(b) presents the results over various numbers of par-
ticles, where we find the particle-efficiency of RSVGD. For
fewer particles, SGGMCf methods have the chance to con-
verge well in 200 epochs thus can be better than RSVGD.
For more particles MCMCs make less salient progress since
the positive autocorrelation limits the representativeness of
limited particles.

Conclusion
We develop Riemannian Stein Variational Gradient Descent
(RSVGD), an extension of SVGD (Liu and Wang 2016) to
Riemann manifold. We generalize the idea of SVGD and
derive the directional derivative on Riemann manifold. To
solve for a valid and close-formed functional gradient, we
first analyze the requirements by Riemann manifold and il-
lustrate the failure of SVGD techniques in our case, then
propose our solution and validate it. Experiments show
the benefit of utilizing distribution geometry on inference
tasks on Euclidean space, and the advantages of particle-
efficiency, iteration-effectiveness and approximation flexi-
bility on Riemann manifold.

Possible future directions include exploiting Riemannian
Kernelized Stein Discrepancy which would be more appro-
priate with a properly chosen manifold. Mini-batch version
of RSVGD for scalability is also an interesting direction,
since the naı̈ve implementation does not work well as men-
tioned. Applying RSVGD to a broader stage is also promis-
ing, including Euclidean space tasks like deep generative
models and Bayesian neural networks (with Riemann metric
tensor estimated in the way of (Li et al. 2016)), and Riemann
manifold tasks like Bayesian matrix completion (Song and
Zhu 2016) on Stiefel manifold.
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