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A1. Proof of Lemma 1 (Continuity Equation on
Riemann Manifold)
Let F(·)(·) be the flow of X . ∀U ⊂ M compact, consider
the integral

∫
Ft(U)

ptµg . Since a particle in U at time 0 will
always in Ft(U) at time t and vice versa, the integral, i.e. the
portion of particles in Ft(U) at time t, is equal to the portion
of particles in U at time 0 for any time t. So it is a constant.
Reynolds transport theorem gives

0 =
d

dt

∫
Ft(U)

ptµg =

∫
Ft(U)

(
∂pt
∂t

+ div(ptX)

)
µg

for any U and t, so the integrand must be zero and we de-
rived the conclusion.

A2. Well-definedness of KL-divergence on
Riemann Manifold
We define the KL-divergence between two distributions on
M by their p.d.f. qµ and pµ w.r.t. volume form µ as:

KL(q||p) :=

∫
M
qµ log(qµ/pµ)µ.

To make this notion well-defined, we need to show that the
right hand side of the definition is invariant of µ. Let ω be
another volume form. Since ∀A ∈M, µ(A) and ω(A) lie on
the same 1-dimensional linear space (the space of m-forms
at A), we have α(A) ∈ R+ s.t. ω(A) = α(A)µ(A). Such a
construction gives a smooth function α :M→ R+. By the
definition of p.d.f., qω = qµ/α. So

∫
M qω log(qω/pω)ω =∫

M qµ log(qµ/pµ)µ, which indicates that the integral is in-
dependent of the chosen volume form.

A3. Proof of Theorem 2
To formally prove Theorem 2, we first deduce a lemma,
which gives the p.d.f. of the distribution transformed by a
diffeomorphism onM (an invertible smooth transformation
onM).
Lemma 8 (Transformed p.d.f.). Let φ be an orientation-
preserving diffeomorphism onM, and p the p.d.f. of a dis-
tribution onM. Denote p[φ] as the p.d.f. of the distribution
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of the φ-transformed random variable from the one obeying
p, i.e. the transformed p.d.f. Then in any local coordinate
system (c.s.) (U,Φ),

p[φ] =

(
p
√
|G|
)
◦ φ−1√
|G|

∣∣Jacφ−1
∣∣ , (9)

where G is the Riemann metric tensor in (U,Φ) and |G| is
its determinant, and Jacφ−1 is the Jacobian determinant
of Φ ◦ φ−1 ◦ Φ−1 : Rm → Rm. The right hand side is
coordinate invariant.

Proof. Let U be a compact subset ofM, and (V,Φ), V ⊂ U
be a local c.s. of U with coordinate chart {xi}mi=1. On one
hand, due to the definition of p[φ], we have Probp(U) =
Probp[φ](φ(U)). On the other hand, we can invoke the theo-
rem of global change of variables on manifold (Abraham,
Marsden, and Ratiu, 2012, Theorem 8.1.7), which gives
Probp(U) =∫

U

pµg=

∫
φ(U)

φ−1
∗
(pµg) =

∫
φ(U)

(p ◦φ−1)φ−1
∗
(µg)

(10)

=

∫
φ(U)

(p ◦ φ−1)(
√
|G| ◦ φ−1)|Jacφ−1|dx1 ∧ · · · ∧ dxm

=

∫
φ(U)

(
p
√
|G|
)
◦ φ−1√
|G|

|Jacφ−1|µg (11)

= Prob(p
√
|G|)◦φ−1

√
|G|

|Jacφ−1|
(φ(U)), where φ−1∗(·) is the

pull-back of φ−1 on the m-forms on M. Combining both
hands and noting the arbitrariness of U , we get the desired
conclusion.

Let F(·)(·) be the flow ofX . For any evolving distribution
pt under dynamics X , by its definition, we have pt = p0[Ft].
Due to the property of flow that for any s, t ∈ R, Fs+t =
Fs ◦ Ft = Ft ◦ Fs, we have ps+t = p0[Fs+t] = p0[Fs◦Ft] =

(p0[Fs])[Ft] = (ps)[Ft].
Now, for a fixed t0 ∈ R, we let pt be the evolving distri-

bution under X that satisfies pt0 = p, the target distribution.
For sufficiently small t > 0, Ft(·) is a diffeomorphism on



M. Equipped with all these knowledge, we begin the final
deduction:

− d

dt

∣∣∣∣
t=t0

KL(qt||p) = − d

dt

∣∣∣∣
t=0

∫
M
qt0+t log

qt0+t
pt0

µg

(Treat qt0+t as (qt0)[Ft] and apply Eqn. (9))

=− d

dt

∣∣∣∣
t=0

∫
M

(
qt0
√
|G|
)
◦ F−1t√

|G|
∣∣JacF−1t

∣∣
·

(
log

(
qt0
√
|G|
)
◦ F−1t√

|G|
+ log

∣∣JacF−1t

∣∣− log pt0

)
µg

(Apply F−1t to the entire integral and invoke the theorem of
global change of variables Eqn. (10))

=− d

dt

∣∣∣∣
t=0

∫
F−1
t (M)

([(
qt0
√
|G|
)
◦ F−1t√

|G|
∣∣JacF−1t

∣∣
·

(
log

(
qt0
√
|G|
)
◦F−1t√

|G|
+ log

∣∣JacF−1t

∣∣−log pt0

)]
◦Ft

)
F ∗t (µg)

(F−1t (M) = M since F−1t is a diffeomorphism on M.
|JacF−1t | ◦ Ft = |JacFt|−1. See Eqn. (11) for the expres-
sion of F ∗t (µg), the pull-back of Ft on µg)

=− d

dt

∣∣∣∣
t=0

∫
M

qt0
√
|G|√

|G| ◦ Ft
|JacFt|−1 ·

(
log

qt0
√
|G|√

|G| ◦ Ft

− log |JacFt| − log(pt0 ◦ Ft)

)
·
√
|G| ◦ Ft√
|G|

|JacFt|µg

(Rearange terms)

=− d

dt

∣∣∣∣
t=0

∫
M
qt0

[
log qt0− log

((
pt0
√
|G|
)
◦Ft√

|G|
|JacFt|

)]
µg

(Note the property of flow: Ft = F−1−t . Treat pt0−t as
(pt0)[F−t] and apply Eqn. (9) inversely)

=− d

dt

∣∣∣∣
t=0

∫
M
qt0 [log qt0 − log pt0−t]µg

(M is unchanged over time t (otherwise an integral over the
boundary would appear))

=

∫
M
qt0

∂

∂t
(log pt0−t)

∣∣∣∣
t=0

µg = −
∫
M
qt0

∂

∂t
(log pt0+t)

∣∣∣∣
t=0

µg

(Refer to Eqn. (3))

=

∫
M

(qt0/pt0)div(pt0X)µg = Eqt0 [div(pt0X)/pt0 ]

(Property of divergence)

=Eqt0
[
X[log pt0 ] + div(X)

]
.

Due to the arbitrariness of t0, we get the desired conclusion
and complete the proof.

A4. Condition for Stein’s Identity (Stein Class)

Now we derive the condition for Stein’s identity to hold. We
require Ep[div(pX)/p] = 0, which is∫

M
div(pX)µg =

∫
∂M

i(pX)µg

=

m∑
i=1

∫
∂M

p
√
|G|(−1)i+1Xi

∧
dx¬i,

where the first equality holds due to Gauss’ theorem (Abra-
ham, Marsden, and Ratiu, 2012, Theorem 8.2.9), ∂M is
the boundary of M, iX : Ak(M) → Ak−1(M) is the
interior product or contraction, (iXω)(A)[v1, . . . , vk−1] =
ω(A)[X(A), v1, . . . , vk−1], Xi is the i-th component of X
under the natural basis of some local c.s.,

∧
dx¬i := dx1 ∧

· · ·∧dxi−1∧dxi+1∧· · ·∧dxm with “∧” the wedge product
(exterior product).

For manifolds like spheres, ∂M is empty and the above
integral is always zero, so the Stein class is T (M). If ∂M is
not empty, by its definition, around any point on ∂M there
exists a c.s. (V,Ψ) with coordinate chart (y1, . . . , ym) such
that ∀A ∈ ∂M∩V, ym(A) = 0. Thus dym = 0 and (∂M∩
V, Ψ̃ = (Ψ1, . . . ,Ψm−1)) is a local c.s. of ∂M. Then the
condition for Stein’s identity to hold becomes∫

∂M
pX̃m

√
|G̃|dy1 ∧ · · · ∧ dym−1 = 0,

where G̃ is the Riemann metric tensor in (∂M∩ V, Ψ̃), and
X̃m is the m-th component of X in (∂M∩ V, Ψ̃).

For the case where M is a compact subset of Euclidean
space Rm, around any pointA on the boundary ∂M, we take
(V,Ψ) such that ym = 0 and the natural basis {∂i|∂i :=
∂
∂yi , i = 1, . . . ,m} is orthonormal. Then |G̃(A)| = 1 and
∂m is perpendicular to the span of {∂1, . . . , ∂m−1}, which
is the tangent space of ∂M at A. So ∂m is the unit normal
~n to ∂M, and X̃m is the component of X along the nor-
mal direction, i.e. X̃m = X · ~n. Denote the volume form
dy1 ∧ · · · ∧ dym−1 on ∂M as dS, then the condition for
Stein’s identity is

∫
∂M pX · ~ndS, which meets the conclu-

sion in (Liu and Wang 2016). We provide a generalization
of the conclusion to general Riemann manifold.

A5. Proof of Theorem 4

For any X ∈ X, let f = ι−1(X) (ι is defined in the proof
of Lemma 3), i.e. the only element in HK such that X =



grad f . Then in any c.s., X = gij∂if∂j , and we have

J (X) := Eq [X[log p] + div(X)]

=Eq
[
Xj∂j log(p

√
|G|) + ∂jX

j
]

=Eq
[
gij∂if∂j log(p

√
|G|) + ∂j(g

ij∂if)
]

=Eq
[(
gij∂j log(p

√
|G|) + ∂jg

ij
)
∂if + gij∂i∂if

]
.

Now we invoke the conclusions of Zhou (2008) that
∂iK(A, ·), ∂i∂jK(A, ·) ∈ HK , and for any f ∈ HK ,
〈f(·), ∂iK(A, ·)〉HK = ∂if(A), 〈f(·), ∂i∂jK(A, ·)〉HK =
∂i∂jf(A):

J (X) =Eq
[ (
gij∂j log(p

√
|G|) + ∂jg

ij
)
〈f(·), ∂iK(A, ·)〉HK

+ gij 〈f(·), ∂i∂jK(A, ·)〉HK
]

=Eq
[〈
f(·),

(
gij∂j log(p

√
|G|) + ∂jg

ij
)
∂iK(A, ·)

+ gij∂i∂jK(A, ·)
〉
HK

]
=
〈
f(·),Eq

[ (
gij∂j log(p

√
|G|) + ∂jg

ij
)
∂iK(A, ·)

+ gij∂i∂jK(A, ·)
]〉
HK

,

where all the functions, differentiations and expectations are
with argument A, if not specified. Define

f̂(·) =Eq
[ (
gij∂j log(p

√
|G|) + ∂jg

ij
)
∂iK(A, ·)

+ gij∂i∂jK(A, ·)
]

=Eq
[
gij∂j log(p

√
|G|)∂iK(A, ·)

+ ∂j
(√
|G|gij∂iK(A, ·)

)
/
√
|G|
]

=Eq
[
gij∂j log(p

√
|G|)∂iK(A, ·) + ∆K(A, ·)

]
,

we have J (X) = 〈f(·), f̂(·)〉HK , and by the isomet-
ric isomorphism between HK and X, we have J (X) =

〈grad f, grad f̂〉X = 〈X, X̂〉X.

A6 Expressions in the Isometrically Embedded
Space
In this part of appendix we express the functional gradient
in the isometrically embedded space, for general Riemann
manifolds and two specific Riemann manifolds.

A6.1 For General Riemann Manifolds (Proposition 6)
Let Ξ be an isometric embedding ofM into (Rn, {yα}nα=1).
For a coordinate system (c.s.) (U,Φ) ofM with coordinate
chart {xi}mi=1, define ξ := Ξ ◦ Φ−1. We first develop a key
tool. Let h : Ξ(M) → R be a smooth function on the em-
bedded manifold. In (U,Φ) we define f := h ◦ ξ : U → R
as a smooth function on an open subset of Rm. By the chain
rule of derivative, we have

∂if = ∂αh
∂yα

∂xi
= M>∇h,

where M ∈ Rn×m : Mαi = ∂yα

∂xi , and ∇h is the usual gra-
dient of h as a function on Rn. For isometric embedding, we
have gij =

∑n
α=1

∂yα

∂xi
∂yα

∂xj , or in matrix form G = M>M .
From Eqn. (5), we know that f̂ ′ = Eq

[
f1 + f2

]
where

f1 = (gradK)[log p] and f2 = ∆K. Then in any c.s. of
M,
f1 =gij(∂i log p)(∂jK)

=gij
∂yα

∂xi
(∂α log p)

∂yβ

∂xj
(∂βK)

=(∇ log p)>(MG−1M>)∇K,

f2 =gij(∂iK)(∂j log
√
|G|) + ∂i(g

ij∂jK)

=(∇ log
√
|G|)>(MG−1M>)∇K +

∂yα

∂xi
∂α(gij

∂yβ

∂xj
∂βK)

=(∇ log
√
|G|)>(MG−1M>)∇K

+ (M>∇)>(G−1M>∇K)

=(∇ log
√
|G|)>(MG−1M>)∇K

+
(

(M>∇)>(G−1M>)
)
∇K

+ tr
(

(∇∇>K)(MG−1M>)
)
.

To further simplify the expression, we mention it here
that the operator MG−1M> = M(M>M)−1M> is the
orthogonal projection onto the column space of M , which
is the tangent space of the embedded manifold. With N ∈
Rn×(n−m) consisting of a set of orthonormal basis of the
orthogonal complement of the tangent space, we can ex-
press the operator as (In − NN>). Details are presented
in Byrne and Girolami (2013) or Appendix A.2 of Liu, Zhu,
and Song (2016). The advantage of using N instead of M
is that it is independent of c.s. ofM, so we do not need to
choose a set of c.s. coveringM and conduct calculation in
each c.s. Additionally, it is usually easier to find, and the ex-
pression with N is more computationally economic. With
this replacement, we have

f1 + f2 =(∇ log p
√
|G|)>(MG−1M>)∇K

+
(

(M>∇)>(G−1M>)
)
∇K

+ tr
(

(∇∇>K)(MG−1M>)
)

=(∇ log p
√
|G|)>(In −NN>)∇K

+
(

(M>∇)>(G−1M>)
)
∇K

+ tr
(

(∇∇>K)− (∇∇>K)NN>
)

=(∇ log p
√
|G|)>(In −NN>)∇K

+
(

(M>∇)>(G−1M>)
)
∇K

+∇>∇K − tr
(
N>(∇∇>K)N

)
.

Finally, X̂ = grad f̂ = gij∂if̂∂j = gij ∂y
α

∂xi ∂αf̂
∂yβ

∂xj ∂β =

MG−1M∇f̂ = (In−NN>)∇f̂ , which finishes the deriva-
tion.



Note that M and G depend on the choice of c.s. of M.
Note also that the parametric form of Ξ−1 and ξ−1 may not
be unique (e.g. Ξ−1(y) = y and Ξ−1(y) = y + (1 − y>y)
are both valid on Ξ(Sn−1), but they give different gradients).
Nevertheless, since f̂ ′ is already a well-defined smooth func-
tion onM due to Eqn. (5), its expression in the embedded
space w.r.t. any c.s. and any parametric form of Ξ−1 and
ξ−1 should give the same result. We introduce N in hope
to explicitly express this independence, and we succeed for
X̂ ′ given f̂ ′. For f̂ ′, it is still a future work to make its ex-
pression explicitly independent of c.s. ofM and parametric
form of Ξ−1 and ξ−1.

A6.2 For Hyperspheres (Proposition 7) Let Sn−1 be iso-
metrically embedded in Rn via Ξ : y 7→ y the iden-
tity mapping. We select the c.s. (U,Φ) as the upper semi-
hypersphere: U := {y ∈ Rn|y>y = 1, yn > 0}, Φ :
y 7→ (y1, . . . , yn−1)> ∈ Rn−1. Then we have Ω :=
Φ(U) = {x ∈ Rn−1|x>x < 1}, and ξ : Ω → Rn, x 7→
(x1, . . . , xn−1,

√
1− x>x)>. Furthermore,

M =

(
In−1

− x>√
1−x>x

)
,

andG = In−1+ xx>

1−x>x ,G−1 = In−1−xx>, |G| = 1
1−x>x .

The tangent space of Ξ(Sn−1) at y ∈ Rn is a plane perpen-
dicular to the direction of y, thus the orthogonal complement
of the tangent space is the linear span of y, which indicates
that N = y. Plugging in all these quantities in Eqn. (7), we
can derive the result of Eqn. (8).

A6.3 For the Product Manifold of Hyperspheres To
fit the inference task of Spherical Admixture Model
(Reisinger et al. 2010) (SAM), we need to further
specify the manifold as the product manifold of hy-
perspheres, (Sn−1)P . Let (M)P be a general product
manifold. For any point A = (A(1), . . . , A(P )) ∈ (M)P ,

(
⊗P

k=1 U(k),
⊗P

k=1{x
i(k)
(k) }

n−1
i(k)=1) is a local c.s., where each

(U(k), {x
i(k)
(k) }

n−1
i(k)=1 is a local c.s. of M(k) around A(k).

In this c.s., {∂(k),i(k) |k = 1, . . . , P, i(k) = 1, . . . , n − 1}
is the natural basis, and the Riemann structure in the
tangent space is defined by direct product of inner product
space: g(k,`),i(k),j(`) = δk`gi(k),j(`) . By this construction,
one can derive the expressions for the gradient of a
smooth function f ∈ C∞((M)P ) and the divergence of
a vector field X =

∑P
k=1X

i(k)
(k) ∂(k),i(k) ∈ T ((M)P ):

grad f =
∑P
k=1 g

i(k)j(k)
(k) ∂(k),i(k)f∂(k),j(k) , div(X) =∑P

k=1

(
∂(k),i(k)X

i(k)
(k) +X

i(k)
(k) ∂(k),i(k) log

√
|G(k)|

)
, as

well as the Beltrami-Laplacian ∆f .
For y = (y(1), . . . , y(P )) ∈ (Sn−1)P with each y(k) ∈

Sn−1, and kernel K(y, y′) =
∏P
k=1K(k)(y(k), y

′
(k)), we

have the following result:

Proposition 9. X̂ ′(`) = (Id − y(`)y′(`)
>

)∇′(`)f̂
′,

f̂ ′ =Eq
[
K

P∑
k=1

[
(∇(k)log p

)>(∇(k)logK(k))+

∇>(k)∇(k) logK(k) − y>(k)
(
∇(k)∇>(k)K(k)

)
y(k)

+
∥∥∇(k)logK(k)

∥∥2 − (y>(k)∇(k)logK(k))
2

− (y>(k)∇(k)log p+ n− 1)y>(k)∇(k)logK(k)

]]
. (12)

This proposition directly constructs the algorithm of
RSVGD for the inference task of SAM, where each y(k) is a
topic lying on a hypersphere.

A7 Implementation of RSVGD for Bayesian Logistic Re-
gression From the model description in the main context,
we have

log-prior: log p0(w) = −w
>w

2α
+ const,

log-likelihood: log p({yd}|w, {xd})

=

D∑
d=1

(
ydw

>xd − log(1 + ew
>xd)

)
+ const,

log-posterior: log p(w|{yd}, {xd}) = −w
>w

2α

+

D∑
d=1

(
ydw

>xd − log(1 + ew
>xd)

)
+ const.

So we have the gradient of the target density

∇ log p(w|{yd}, {xd}) = − 1

α
w +

D∑
d=1

(
yd − s(w>xd)

)
xd,

and the Riemann metric tensor

G(w) =I
(
p({yd}|w, {xd})

)
−∇∇> log p0(w)

=Ep({yd}|w,{xd})
[(
∇ log p({yd}|w, {xd})

)(
∇ log p({yd}|w, {xd})

)>]
−∇∇> log p0(w)

=

D∑
d=1

cdxdx
>
d +

1

α
Im,

where I(·) is the Fisher information of a distribution, and
cd = s(w>xd)(1 − s(w>xd)). For G−1, direct numerical
inversion is applicable, with time complexity O(m3). An-
other method, with time complexity O(m2D), can be de-
rived by iteratively applying the Sherman-Morrison formula
(Sherman and Morrison 1950):

G−1d = G−1d−1 −
cd(G

−1
d−1xd)(G

−1
d−1xd)

>

1 + cdx>d G
−1
d−1xd

,

G−1 = G−1D , G−10 = αIm.

For small datasets, or for mini-batch of data, this implemen-
tation would be advantageous. But in our experiments we
found that direct inversion is still more efficient.



To continue, we first note ∂iG := ∂wiG =∑D
d=1 fdxdixdx

>
d , where fd = 1−ew

>xd

1+ew
>xd

cd. Note also that

∂iGjk =
∑D
d=1 fdxdixdjxdk, so the indices i, j, k are com-

pletely permutable. Particularly, ∂iGjk = ∂jGik. For the
gradient of the log-determinant,

∂i log |G(w)| = tr(G−1∂iG) =

D∑
d=1

fd(x
>
d G
−1xd)xdi,

and for the gradient of the inverse matrix,
m∑
j=1

∂jG
−1
ij (w) = −G−1(i,:)

m∑
j=1

(∂jG)G−1(:,j)

=−
m∑
k=1

G−1(i,k)

m∑
j=1

m∑
`=1

(∂jG)(k,`)G
−1
(`,j)

=−
m∑
k=1

G−1(i,k)

m∑
j=1

m∑
`=1

(∂kG)(j,`)G
−1
(`,j)

=−
m∑
k=1

G−1(i,k)tr
(
(∂kG)G−1

)
=−G−1(i,:)∇ log |G(w)|.

Now all the quantities needed for RSVGD (Eqn. (6)) are de-
rived.
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