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Abstract
It is known that the Langevin dynamics used in
MCMC is the gradient flow of the KL divergence
on the Wasserstein space, which helps conver-
gence analysis and inspires recent particle-based
variational inference methods (ParVIs). But no
more MCMC dynamics is understood in this way.
In this work, by developing novel concepts, we
propose a theoretical framework that recognizes
a general MCMC dynamics as the fiber-gradient
Hamiltonian flow on the Wasserstein space of a
fiber-Riemannian Poisson manifold. The “conser-
vation + convergence” structure of the flow gives
a clear picture on the behavior of general MCMC
dynamics. The framework also enables ParVI
simulation of MCMC dynamics, which enriches
the ParVI family with more efficient dynamics,
and also adapts ParVI advantages to MCMCs.
We develop two ParVI methods for a particular
MCMC dynamics and demonstrate the benefits in
experiments.

1 Introduction
Dynamics-based Markov chain Monte Carlo methods
(MCMCs) in Bayesian inference have drawn great attention
because of their wide applicability, efficiency, and scala-
bility for large-scale datasets (Neal, 2011; Welling & Teh,
2011; Chen et al., 2014; 2016; Li et al., 2019). They draw
samples by simulating a continuous-time dynamics, or more
precisely, a diffusion process, that keeps the target distribu-
tion invariant. However, they often exhibit slow empirical
convergence and relatively small effective sample size, due
to the positive auto-correlation of the samples. Another
type of inference methods, called particle-based variational
inference methods (ParVIs), aim to deterministically update
samples, or particles as they call them, so that the particle
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distribution minimizes the KL divergence to the target distri-
bution. They fully exploit the approximation ability of a set
of particles by imposing an interaction among them, so they
are more particle-efficient. Optimization-based principle
also makes them convergence faster. Stein variational gradi-
ent descent (SVGD) (Liu & Wang, 2016) is the most famous
representative, and the field is under an active development
both in theory (Liu, 2017; Chen et al., 2018b;a; Liu et al.,
2019) and application (Liu et al., 2017; Pu et al., 2017; Zhuo
et al., 2018; Yoon et al., 2018).

The study on the relation between the two families starts
from their interpretations on the Wasserstein space P(M)
supported on some smooth manifoldM (Villani, 2008; Am-
brosio et al., 2008). It is defined as the space of distributions
P(M) := {q | q is a probability measure onM and

∃x0 ∈M s.t. Eq(x)[d(x, x0)2] <∞}
with the well-known Wasserstein distance. It is very general
yet still has necessary structures. With its canonical metric,
the gradient flow (steepest descending curves) of the KL
divergence is defined. It is known that the Langevin dynam-
ics (LD) (Langevin, 1908; Roberts et al., 1996), a particular
type of dynamics in MCMC, simulates the gradient flow on
P(M) (Jordan et al., 1998). Recent analysis reveals that
existing ParVIs also simulate the gradient flow (Chen et al.,
2018a; Liu et al., 2019), so they simulate the same dynamics
as LD. However, besides LD, there are more types of dy-
namics in the MCMC field that converge faster and produce
more effective samples (Neal, 2011; Chen et al., 2014; Ding
et al., 2014), but no ParVI yet simulates them. These more
general MCMC dynamics have not been recognized as a
process on the Wasserstein space P(M), and this poses an
obstacle towards ParVI simulations. On the other hand, the
convergence behavior of LD becomes clear when viewing
LD as the gradient flow of the KL divergence on P(M)
(e.g., Cheng & Bartlett (2017)), which leads distributions to
the target in a steepest way. However, such knowledge on
other MCMC dynamics remains obscure, except a few. In
fact, a general MCMC dynamics is only guaranteed to keep
the target distribution invariant (Ma et al., 2015), but unnec-
essarily drives a distribution towards the target steepest. So
it is hard for the gradient flow formulation to cover general
MCMC dynamics.

In this work, we propose a theoretical framework that gives
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a unified view of general MCMC dynamics on the Wasser-
stein space P(M). We establish the framework by two
generalizations over the concept of gradient flow towards
a wider coverage: (a) we introduce a novel concept called
fiber-Riemannian manifoldM, where only the Riemannian
structure on each fiber (roughly a decomposed submanifold,
or a slice ofM) is required, and we develop the novel no-
tion of fiber-gradient flow on its Wasserstein space P(M);
(b) we also endow a Poisson structure to the manifoldM
and exploit the corresponding Hamiltonian flow on P(M).
Combining both explorations, we define a fiber-Riemannian
Poisson (fRP) manifoldM and a fiber-gradient Hamiltonian
(fGH) flow on its Wasserstein space P(M). We then show
that any regular MCMC dynamics is the fGH flow on the
Wasserstein space P(M) of an fRP manifoldM, and there
is a correspondence between the dynamics and the structure
of the fRP manifoldM.

This unified framework gives a clear picture on the behavior
of MCMC dynamics. The Hamiltonian flow conserves the
KL divergence to the target distribution, while the fiber-
gradient flow minimizes it on each fiber, driving each con-
ditional distribution to meet the corresponding conditional
target. The target invariant requirement is recovered in
which case the fiber-gradient is zero, and moreover, we rec-
ognize that the fiber-gradient flow acts as a stabilizing force
on each fiber. It enforces convergence fiber-wise, making
the dynamics in each fiber robust to simulation with the
noisy stochastic gradient, which is crucial for large-scale in-
ference tasks. This generalizes the discussion of Chen et al.
(2014) and Betancourt (2015) on Hamiltonian Monte Carlo
(HMC) (Duane et al., 1987; Neal, 2011; Betancourt, 2017)
to general MCMCs. In our framework, different MCMCs
correspond to different fiber structures and flow components.
They can be categorized into three types, each of which has
its particular behavior. We make a unified study on various
existing MCMCs under the three types.

Our framework also bridges the fields of MCMCs and
ParVIs, so that on one hand, the gate to the reservoir of
MCMC dynamics is opened to the ParVI family and abun-
dant efficient dynamics are enabled beyond LD, and on the
other hand, MCMC dynamics can be now simulated in the
ParVI fashion, inheriting advantages like particle-efficiency.
To demonstrate this, we develop two ParVI simulation meth-
ods for the Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) dynamics (Chen et al., 2014). We show the
merits of using SGHMC dynamics over LD in the ParVI
field, and ParVI advantages over conventional stochastic
simulation in MCMC.

Related work Ma et al. (2015) give a complete recipe on
general MCMC dynamics. The recipe guarantees the target
invariant principle, but leaves the behavior of these dynam-
ics unexplained. Recent analysis towards a broader kind

of dynamics via the Fokker-Planck equation (Kondratyev
& Vorotnikov, 2017; Bruna et al., 2017) is still within the
gradient flow formulation, thus not general enough.

On connecting MCMC and ParVI, Chen et al. (2018a) ex-
plore the correspondence between LD and Wasserstein gra-
dient flow, and develop new implementations for dynamics
simulation. However, their consideration is still confined
on LD, leaving more general MCMC dynamics untouched.
Gallego & Insua (2018) formulate the dynamics of SVGD
as a particular kind of MCMC dynamics, but no existing
MCMC dynamics is recognized as a ParVI. More recently,
Taghvaei & Mehta (2019) derive an accelerated ParVI that
is similar to one of our ParVI simulations of SGHMC. The
derivation does not utilize the dynamics and the method con-
nects to SGHMC only algorithmically. Our theory solidates
our ParVI simulations of SGHMC, and enables extensions
to more dynamics.

2 Preliminaries
We first introduce the recipe for general MCMC dynam-
ics (Ma et al., 2015), and prior knowledge on flows on a
smooth manifoldM and its Wasserstein space P(M).

A smooth manifoldM is a topological space that locally
behaves like an Euclidean space. Since the recipe describes
a general MCMC dynamics in an Euclidean space RM ,
it suffices to only considerM that is globally diffeomor-
phic to RM , which is its global coordinate system. For
brevity we use the same notation for a point onM and its
coordinates due to their equivalence. A tangent vector v
at x ∈ M can be viewed as the differentiation along the
curve that is tangent to v at x, so v can be expressed as the
combination v =

∑M
i=1 v

i∂i of the differentiation operators
{∂i := ∂

∂xi }
M
i=1, which serve as a set of basis of the tangent

space TxM at x. The cotangent space T ∗xM at x is the
dual space of TxM, and the cotangent bundle is the union
T ∗M :=

⋃
x∈M T ∗xM. We adopt Einstein convention to

omit the summation symbol for a pair of repeated indices in
super- and sub-scripts (e.g., v = vi∂i :=

∑M
i=1 v

i∂i). We
assume the target distribution to be absolutely continuous
so that we have its density function p.

2.1 The Complete Recipe of MCMC Dynamics
The fundamental requirement on MCMCs is that the target
distribution p is kept stationary under the MCMC dynamics.
Ma et al. (2015) give a general recipe for such a dynamics
expressed as a diffusion process in an Euclidean space RM :

dx = V (x) dt+
√

2D(x) dBt(x),

V i(x) =
1

p(x)
∂j

(
p(x)

(
Dij(x) +Qij(x)

))
,

(1)

for any positive semi-definite matrix DM×M (diffusion
matrix) and any skew-symmetric matrix QM×M (curl ma-
trix), where Bt(x) denotes the standard Brownian motion in
RM . The term V (x) dt represents a deterministic drift and
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2D(x) dBt(x) a stochastic diffusion. It is also shown

that if D is positive definite, p is the unique stationary distri-
bution. Moreover, the recipe is complete, i.e., any diffusion
process with p stationary can be cast into this form.

The recipe gives a universal view and a unified way to ana-
lyze MCMCs. In large scale Bayesian inference tasks, the
stochastic gradient (SG), a noisy estimate of (∂j log p) on
a randomly selected data mini-batch, is crucially desired
for data scalability. The dynamics is compatible with SG,
since the variance of the drift is of higher order of the dif-
fusion part (Ma et al., 2015; Chen et al., 2015). In many
MCMC instances, x = (θ, r) is taken as an augmentation of
the target variable θ by an auxiliary variable r. This could
encourage the dynamics to explore a broader area to reduce
sample autocorrelation and improve efficiency (e.g., Neal
(2011); Ding et al. (2014); Betancourt et al. (2017)).

2.2 Flows on a Manifold
The mathematical concept of the flow associated to a vector
fieldX onM is a set of curves onM, {(ϕt(x))t | x ∈M},
such that the curve (ϕt(x))t through point x ∈M satisfies
ϕ0(x) = x and that its tangent vector at x, d

dtϕt(x)
∣∣
t=0

,
coincides with the vector X(x). For any vector field, its
flow exists at least locally (Do Carmo (1992), Sec. 0.5). We
introduce two particular kinds of flows for our concern.

2.2.1 GRADIENT FLOWS

We consider the gradient flow onM induced by a Rieman-
nian structure g (e.g., Do Carmo (1992)), which gives an in-
ner product gx(·, ·) in each tangent space TxM. Expressed
in coordinates, gx(u, v) = gij(x)uivj ,∀u = ui∂i, v =
vi∂i ∈ TxM, and the matrix (gij(x)) is required to be
symmetric (strictly) positive definite. The gradient of a
smooth function f onM can then be defined as the steepest
ascending direction and has the coordinate expression:

grad f(x) = gij(x)∂jf(x)∂i ∈ TxM,

where gij(x) is the entry of the inverse matrix of (gij(x)).
It is a vector field and determines a gradient flow.

On P(M), a Riemannian structure is available with a Rie-
mannian support (M, g) (Otto, 2001; Villani, 2008; Am-
brosio et al., 2008). The tangent space at q ∈ P(M) is
recognized as (Villani (2008), Thm. 13.8; Ambrosio et al.
(2008), Thm. 8.3.1):

TqP(M) = {grad f | f ∈ C∞c (M)}
L2
q(M)

,

where C∞c (M) is the set of compactly supported
smooth functions on M, L2

q(M) is the Hilbert space
{X: vector field onM | Eq[g(X,X)] < ∞} with inner
product 〈X,Y 〉L2

q
:= Eq(x)[gx(X(x), Y (x))], and the over-

line means closure. The tangent space TqP inherits an inner
product from L2

q(M), which defines the Riemannian struc-
ture on P(M). It is consistent with the Wasserstein distance
(Benamou & Brenier, 2000). With this structure, the gra-

dient of the KL divergence KLp(q) :=
∫
M log(q/p) dq is

given explicitly (Villani (2008), Formula 15.2, Thm. 23.18):
grad KLp(q) = grad log(q/p) ∈ TqP(M). (2)

Noting that TqP is a linear subspace of the Hilbert space
L2
q(M), an orthogonal projection πq : L2

q(M)→ TqP can
be uniquely defined. For any X ∈ L2

q(M), πq(X) is the
unique vector in TqP such that div(qX) = div(qπq(X))
(Ambrosio et al. (2008), Lem. 8.4.2), where div is the di-
vergence on M and div(qX) = ∂i(qX

i) when q is the
density w.r.t. the Lebesgue measure of the coordinate space
RM . The projection can also be explained with a physical
intuition. Let X ∈ L2

q(M) be a vector field on M, and
let its flow act on the random variable x of q. The trans-
formed random variable ϕt(x) specifies a distribution qt,
and a distribution curve (qt)t is then induced by X . The
tangent vector of such (qt)t at q is exactly πq(X).

2.2.2 HAMILTONIAN FLOWS

The Hamiltonian flow is an abstraction of the Hamilto-
nian dynamics in classical mechanics (Marsden & Ratiu,
2013). It is defined in association to a Poisson struc-
ture (Fernandes & Marcut (2014)) on a manifold M,
which can be expressed either as a Poisson bracket {·, ·} :
C∞(M) × C∞(M) → C∞(M), or equivalently as a
bivector field β : T ∗M × T ∗M → C∞(M) via the re-
lation β(df, dh) = {f, h}. Expressed in coordinates,
βx(df(x),dh(x)) = βij(x)∂if(x)∂jh(x), where the ma-
trix (βij(x)) is required to be skew-symmetric and satisfy:

βil∂lβ
jk + βjl∂lβ

ki + βkl∂lβ
ij = 0,∀i, j, k. (3)

The Hamiltonian vector field of a smooth function f onM
is defined as Xf (·) := {·, f}, with coordinate expression:

Xf (x) = βij(x)∂jf(x)∂i ∈ TxM. (4)

A Hamiltonian flow {(ϕt(x))t} is then determined by Xf .
Its key property is that it conserves f : f(ϕt(x)) is constant
w.r.t. t. The Hamiltonian flow may be more widely known
on a symplectic manifold or more particularly a cotangent
bundle (e.g., Da Silva (2001); Marsden & Ratiu (2013)),
but these cases are not general enough for our purpose (e.g.,
they requireM to be even-dimensional).

On P(M), a Poisson structure can be induced by the one
{·, ·}M ofM. Consider linear functions on P(M) in the
form Ff : q 7→ Eq[f ] for f ∈ C∞c (M). A Poisson bracket
for these linear functions can be defined as (e.g., Lott (2008),
Sec. 6; Gangbo et al. (2010), Sec. 7.2):

{Ff , Fh}P := F{f,h}M . (5)

This bracket can be extended for any smooth function F by
its linearization at q, which is a linear function Ff such
that gradFf (q) = gradF (q). The extended bracket is
then given by {F,H}P(q) :={Ff , Fh}P(q) (Gangbo et al.
(2010), Rem. 7.8), where Ff , Fh are the linearizations at
q of functions F , H . The Hamiltonian vector field of F is
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then identified as (Gangbo et al. (2010), Sec. 7.2):
XF (q) = XFf (q) = πq(Xf ) ∈ TqP(M). (6)

On the same topic, Ambrosio & Gangbo (2008) study the
existence and simulation of the Hamiltonian flow on P(M)
forM as a symplectic Euclidean space, and verify the con-
servation of Hamiltonian under certain conditions. Gangbo
et al. (2010) investigate the Poisson structure on the alge-
braic dual (C∞c (M))∗, a superset of P(M), and find that
the canonical Poisson structure induced by the Lie structure
of C∞c (M) coincides with Eq. (5). Their consideration is
also for symplectic EuclideanM, but the procedures and
conclusions can be directly adapted to Riemannian Pois-
son manifolds. Lott (2008) considers the Poisson structure
Eq. (5) on the space of smooth distributions on a Poisson
manifoldM, and find that it is the restriction of the Poisson
structure of (C∞c (M))∗ by Gangbo et al. (2010).

3 Understanding MCMC Dynamics as
Flows on the Wasserstein Space P(M)

This part presents our main discovery that connects MCMC
dynamics and flows on the Wasserstein space P(M). We
first work on the two concepts and introduce novel concepts
for preparation, then propose the unified framework and
analyze existing MCMC instances under the framework.

3.1 Technical Development
We excavate into MCMC and Wasserstein flows and intro-
duce novel concepts in preparation for the framework.

On the MCMC side Noting that flows on P(M) are de-
terministic while MCMCs involve stochastic diffusion, we
first reformulate MCMC dynamics as an equivalent deter-
ministic one for unification. Here we say two dynamics are
equivalent if they produce the same distribution curve.

Lemma 1 (Equivalent deterministic MCMC dynamics).
The MCMC dynamics Eq. (1) with symmetric diffusion ma-
trix D is equivalent to the deterministic dynamics in RM :

dx = Wt(x) dt,

(Wt)
i = Dij∂j log(p/qt) +Qij∂j log p+ ∂jQ

ij ,
(7)

where qt is the distribution density of x at time t.

Proof is provided in Appendix A.1. For any q ∈ P(RM ),
the projected vector field πq(W ) can be treated as a tangent
vector at q, so W defines a vector field on P(RM ). In
this way, we give a first view of an MCMC dynamics as a
Wasserstein flow. An equivalent flow with a richer structure
will be given in Theorem 5.

This expression also helps understanding Barbour’s gen-
erator A (Barbour, 1990) of an MCMC dynamics, which
can be used in Stein’s method (Stein, 1972) of constructing
distribution metrics. For instance the standard Langevin
dynamics induces the Stein’s operator, and it in turn pro-
duces a metric called the Stein discrepancy (Gorham &

Mackey, 2015), which inspires SVGD, and Liu & Zhu
(2018) consider the Riemannian counterparts. The Bar-
bour’s generator maps a function f ∈ C∞c (RM ) to another
(Af)(x) := d

dtEqt [f ]
∣∣
t=0

, where (qt)t obeys initial condi-
tion q0 = δx (Dirac measure). In terms of the linear function
Ff on P(RM ), we recognize (Af)(x) = d

dtFf (qt)
∣∣
t=0

=
〈gradFf , πq0(W0)〉Tq0P as the directional derivative of Ff
along (qt)t at q0. This knowledge gives the expression:

Af =
1

p
∂j
[
p
(
Dij +Qij

)
(∂if)

]
, (8)

which meets existing results (e.g., Gorham et al. (2016),
Thm. 2). Details are provided in Appendix A.2.

On the Wasserstein flow side We deepen the knowledge
on flows onP(M) with a Riemannian and Poisson structure
of M.1 The gradient of KLp is given by Eq. (2), but its
Hamiltonian vector field is not directly available due to its
non-linearity. We first develop an explicit expression for it.

Lemma 2 (Hamiltonian vector field of KL on P(M)). Let
β be the bivector field form of a Poisson structure onM
and P(M) endowed with the induced Poisson structure
described in Section 2.2.2. Then the Hamiltonian vector
field of KLp on P(M) is:

XKLp(q) = πq(Xlog(q/p)) = πq(β
ij∂j log(q/p)∂i).

Proof is provided in Appendix A.3. Note that the projection
πq does not make much difference recalling X and πq(X)
produce the same distribution curve through q.

For a wider coverage of our framework on MCMC dynam-
ics, we introduce a novel concept called fiber-Riemannian
manifold and develop associated objects. This notion gener-
alizes Riemannian manifold, such that the non-degenerate
requirement of the Riemannian structure is relaxed.

Definition 3 (Fiber-Riemannian manifold). We say that a
manifoldM is a fiber-Riemannian manifold if it is a fiber
bundle and there is a Riemannian structure on each fiber.

Figure 1. Illustration of a fiber-
Riemannian manifold (M, g̃)
(m = n = 1) and a fiber-
gradient shown in green arrows.

See Fig. 1 for illustra-
tion. Roughly,M (of di-
mension M = m + n)
is a fiber bundle if there
are two smooth mani-
foldsM0 (of dimension
m) and F (of dimen-
sion n) and a surjective
projection $ : M →
M0 such that $ is lo-
cally equivalent to the
projection on the product
space M0 × F → M0

(e.g., Nicolaescu (2007),

1We do not consider the compatibility of the Riemannian and
Poisson structure so it is different from a Kähler manifold.
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Def. 2.1.21). The spaceM0 is called the base space, and F
the common fiber. The fiber through x ∈ M is defined as
the submanifoldM$(x) := $−1($(x)), which is diffeo-
morphic to F . Fiber bundle generalizes the concept of the
product space to allow different structures among different
fibers. The coordinate ofM can be decomposed under this
structure: x = (y, z) where y ∈ Rm is the coordinate of
M0 and z ∈ Rn of M$(x). Coordinates of points on a
fiber share the same y part. We allow m or n to be zero.

According to our definition, a fiber-Riemannian manifold
furnish each fiberMy with a Riemannian structure gMy ,
whose coordinate expression is

(
(gMy)ab

)
(indices a, b for

z run from 1 to n). By restricting a function f ∈ C∞(M)
on a fiberMy, the structure defines a gradient on the fiber:
gradMy

f(y, z) = (gMy
)ab(z) ∂zbf(y, z) ∂za . Taking the

union over all fibers, we have a vector field on the en-
tire manifold M, which we call the fiber-gradient of f :(
(gradfib f)i(x)

)
:=
(
0m, (gM$(x)

)ab(z) ∂zbf($(x), z)
)
.

To express it in a similar way as the gradient, we further
define the fiber-Riemannian structure g̃ as:(
g̃ij(x)

)
M×M :=

(
0m×m 0m×n
0n×m

(
(gM$(x)

)ab(z)
)
n×n

)
, (9)

and the fiber-gradient can be expressed as gradfib f =
g̃ij∂jf∂i. Note that gradfib f(x) is tangent to the fiber
M$(x) and its flow moves points within each fiber. It is not
a Riemannian manifold for m ≥ 1 since (g̃ij) is singular.

Now we turn to the Wasserstein space. As the fiber struc-
ture of P(M) is hard to find, we consider the space
P̃(M) := { q(·|y) ∈ P(My) | y ∈M0 }. With projection
q(·|y) 7→ y, it is locally equivalent toM0 × P(My). Each
of its fiber P(My) has a Riemannian structure induced
by that ofMy (Section 2.2.1), so it is a fiber-Riemannian
manifold. On fiber P(My), according to Eq. (2), we have
grad KLp(·|y)

(
q(·|y)

)
(z) = (gMy)

ab(z)∂zb log q(z|y)
p(z|y)∂za =

(gMy
)ab(z)∂zb log q(y,z)

p(y,z)∂za as a vector field onMy. Tak-
ing the union over all fibers, we have the fiber-gradient of
KLp on P̃(M) as a vector field onM:

gradfib KLp(q)(x) = g̃ij(x) ∂j log
(
q(x)/p(x)

)
∂i. (10)

After projected by πq , gradfib KLp(q) is a tangent vector on
the Wasserstein space P(M). Note that P(M) is locally
equivalent to P(M0)× P̃(M) thus not a fiber-Riemannian
manifold in this way, so it is hard to develop the fiber-
gradient directly on P(M).

3.2 The Unified Framework
We introduce a regularity assumption on MCMC dynam-
ics that our unified framework considers. It is satisfied by
almost all existing MCMCs and its relaxation will be dis-
cussed at the end of this section.

Assumption 4 (Regular MCMC dynamics). We call an
MCMC dynamics regular if its corresponding matrices

Figure 2. Illustration of our unified framework (Theorem 5): a reg-
ular MCMC dynamics is equivalent to the fGH flow WKLp on the
Wasserstein space P(M) of an fRP manifold M. The projected
fiber-gradient (green solid arrows) and Hamiltonian vector field
(red dashed arrows) at qt on M are plotted.

(D,Q) in formulation (1) additionally satisfies: (a) the dif-

fusion matrix D = C or D = 0 or D =

(
0 0
0 C

)
, where

C(x) is symmetric positive definite everywhere; (b) the curl
matrix Q(x) satisfies Eq. (3) everywhere.

Now we formally state our unified framework, with an illus-
tration provided in Fig. 2.

Theorem 5 (Unified framework: equivalence between reg-
ular MCMC dynamics and fGH flows on P(M)). We call
(M, g̃, β) a fiber-Riemannian Poisson (fRP) manifold, and
define the fiber-gradient Hamiltonian (fGH) flow on P(M)
as the flow induced by the vector field:

WKLp :=− π(gradfib KLp)−XKLp ,

WKLp(q) =πq
(

(g̃ij + βij)∂j log(p/q)∂i
)
.

(11)

Then: (a) Any regular MCMC dynamics on RM targeting p
is equivalent to the fGH flowWKLp on P(M) for a certain
fRP manifoldM; (b) Conversely, for any fRP manifoldM,
the fGH flow WKLp on P(M) is equivalent to a regular
MCMC dynamics targeting p in the coordinate space ofM;
(c) More precisely, in both cases, the coordinate expressions
of the fiber-Riemannian structure g̃ and Poisson structure β
ofM coincide respectively with the diffusion matrix D and
the curl matrix Q of the regular MCMC dynamics.

The idea of proof is to show πq(W ) = WKLp(q) (W de-
fined in Lemma 1) at any q ∈ P(M) so that the two vector
fields produce the same evolution rule of distribution. Proof
details are presented in Appendix A.4.

This formulation unifies regular MCMC dynamics and flows
on the Wasserstein space, and provides a direct explana-
tion on the behavior of general MCMC dynamics. The
fundamental requirement on MCMCs that the target distri-
bution p is kept stationary, turns obvious in our framework:
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WKLp(p) = 0. The Hamiltonian flow −XKLp conserves
KLp (difference to p) while encourages efficient exploration
in the sample space that helps faster convergence and lower
autocorrelation (Betancourt et al., 2017). The fiber-gradient
flow − gradfib KLp minimizes KLp(·|y) on each fiberMy,
driving qt(·|y) to p(·|y) and enforcing convergence. Speci-
fication of this general behavior is discussed below.

3.3 Existing MCMCs under the Unified Framework
Now we make detailed analysis on existing MCMC methods
under our unified framework. Depending on the diffusion
matrix D, they can be categorized into three types. Each
type has a particular fiber structure of the corresponding
fRP manifold, thus a particular behavior of the dynamics.

Type 1: D is non-singular (m = 0 in Eq. (9)).
In this case, the corresponding M0 degenerates and M
itself is the unique fiber, soM is a Riemannian manifold
with structure (gij) = D−1. The fiber-gradient flow on
P̃(M) becomes the gradient flow on P(M) so:

WKLp = −π(grad KLp)−XKLp ,

which indicates the convergence of the dynamics: the Hamil-
tonian flow −XKLp conserves KLp while the gradient flow
− grad KLp minimizes KLp on P(M) steepest, so they
jointly minimize KLp monotonically, leading to the unique
minimizer p. This meets the conclusion in Ma et al. (2015).

The Langevin dynamics (LD) (Roberts et al., 1996), used
in both full-batch (Roberts & Stramer, 2002) and stochastic
gradient (SG) simulation (Welling & Teh, 2011), falls into
this class. Its curl matrix Q = 0 makes its fGH flow com-
prise purely the gradient flow, allowing a rich study on its be-
havior (Durmus & Moulines, 2016; Cheng & Bartlett, 2017;
Wibisono, 2018; Bernton, 2018; Durmus et al., 2018). Its
Riemannian version (Girolami & Calderhead, 2011) chooses
D as the inverse Fisher metric so thatM is the distribution
manifold in information geometry (Amari, 2016). Patterson
& Teh (2013) further explore the simulation with SG.

Type 2: D = 0 (n = 0 in Eq. (9)).
In this case, M0 = M and fibers degenerate. The fGH
flowWKLp comprises purely the Hamiltonian flow −XKLp ,
which conserves KLp and helps distant exploration. We note
that under this case, the decrease of KLp is not guaranteed,
so care must be taken in simulation. Particularly, this type
of dynamics cannot be simulated with parallel chains unless
samples initially distribute as p, so they are not suitable
for ParVI simulation. The lack of a stabilizing force in
the dynamics also explains their vulnerability in face of
SG, where the noisy perturbation is uncontrolled. This
generalizes the discussion on HMC by Chen et al. (2014)
and Betancourt (2015) to dynamics of this type.

The Hamiltonian dynamics (e.g., Marsden & Ratiu (2013),
Chap. 2) that HMC simulates is a representative of this kind.

To sample from a distribution p(θ) on manifold S of dimen-
sion `, variable θ is augmented x = (θ, r) with a vector
r ∈ R` called momentum. In our framework, this is to
takeM as the cotangent bundle T ∗S , whose canonical Pois-

son structure corresponds to Q = (βij) =

(
0 −I`
I` 0

)
. A

conditional distribution p(r|θ) is chosen for an augmented
target distribution p(x) = p(θ)p(r|θ). HMC produces more
effective samples than LD with the help of the Hamiltonian
flow (Betancourt et al., 2017). As we mentioned, the dynam-
ics of HMC cannot guarantee convergence, so it relies on
the ergodicity of its simulation for convergence (Livingstone
et al., 2016; Betancourt, 2017). It is simulated in a deliber-
ated way: the second-order symplectic leap-frog integrator
is employed, and r is successively redrew from p(r|θ).

HMC considers Euclidean S and chooses Gaussian
p(r|θ) = N (0,Σ), while Zhang et al. (2016) take p(r|θ) as
the monomial Gamma distribution. On Riemannian (S, g),
p(r|θ) is chosen as N

(
0, (gij(θ))

)
, i.e., the standard Gaus-

sian in the cotangent space T ∗θ S (Girolami & Calderhead,
2011). Byrne & Girolami (2013) simulate the dynamics for
manifolds with no global coordinates, and Lan et al. (2015)
take the Lagrangian form for better simulation, which uses
velocity (tangent vector) in place of momentum (covector).

Type 3: D 6= 0 and D is singular (m,n ≥ 1 in Eq. (9)).
In this case, bothM0 and fibers are non-degenerate. The
fiber-gradient flow stabilizes the dynamics only in each fiber
My, but this is enough for most SG-MCMCs since SG
appears only in the fibers.

SGHMC (Chen et al., 2014) is the first instance of this type.
Similar to the Hamiltonian dynamics, it takesM = T ∗S
and shares the same Q, but its D2`×2` is in the form of
Assumption 4(a) with a constant C`×`, whose inverse C−1

defines a Riemannian structure in every fiberMy. Viewed
in our framework, this makes the fiber bundle structure of
M coincides with that of T ∗S: M0 = S, My = T ∗θ S,
and x = (y, z) = (θ, r). Using Lemma 1, with a specified
p(r|θ), we derive its equivalent deterministic dynamics:{

dθ
dt = −∇r log p(r|θ),
dr
dt = ∇θlog p(θ)+∇θlog p(r|θ)+ C∇rlog p(r|θ)

q(r|θ) .
(12)

We note that it adds the dynamics dr
dt = C∇r log p(r|θ)

q(r|θ) to
the Hamiltonian dynamics. This added dynamics is essen-
tially the fiber-gradient flow −(gradfib KLp)(q) on P(M)
(Eq. (10)), or the gradient flow −(grad KLp(·|θ))(q(·|θ))
on fiber T ∗θ S, which pushes q(·|θ) towards p(·|θ). In pres-
ence of SG, the dynamics for θ ∈ S is unaffected, but for
r ∈ T ∗θ S in each fiber, a fluctuation is introduced due to
the noisy estimate of∇θ log p(θ), which will mislead q(·|θ).
The fiber-gradient compensates this by guiding q(·|θ) to the
correct target, making the dynamics robust to SG.

Another famous example of this kind is the SG Nosé-Hoover
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thermostats (SGNHT) (Ding et al., 2014). It further aug-
ments (θ, r) with the thermostats ξ ∈ R to better balance
the SG noise. In terms of our framework, the thermostats ξ
augmentsM0, and the fiber is the same as SGHMC.

Both SGHMC and SGNHT choose p(r|θ) = N (0,Σ−1),
while SG monomial Gamma thermostats (SGMGT) (Zhang
et al., 2017) uses monomial Gamma, and Lu et al. (2016)
choose p(r|θ) according to a relativistic energy function
to adapt the scale in each dimension. Riemannian ex-
tensions of SGHMC and SGNHT on (S, g) are explored
by Ma et al. (2015) and Liu et al. (2016). Viewed
in our framework, they induce a Riemannian structure(√

(gij(θ))
>
C−1

√
(gij(θ))

)
`×` in each fiberMy = T ∗θ S.

Discussions Due to the linearity of the equivalent sys-
tems (1), (7), (11) w.r.t. D, Q or (g̃ij), (βij), MCMC dy-
namics can be combined. From the analysis above, SGHMC
can be seen as the combination of the Hamiltonian dynamics
on the cotangent bundle T ∗S and the LD in each fiber (cotan-
gent space T ∗θ S). As another example, Zhang et al. (2017)
combine SGMGT of Type 3 with LD of Type 1, creating a
Type 1 method that decreases KLp on the entire manifold
instead of each fiber. This improves the convergence, which
meets their empirical observation.

Assumption 4(a) is satisfied by all the mentioned MCMC
dynamics, and Assumption 4(b) is also satisfied by all ex-
cept SGNHT related dynamics. On this exception, we note
from the derivation of Theorem 5 that, Assumption 4(b) is
only required forM thus P(M) to be a Poisson manifold,
but is not used in the deduction afterwards. Definition of
a Hamiltonian vector field and its key property could also
be established without the assumption, so it is possible to
extend the framework under a more general mathematical
concept that relaxes Assumption 4(b). Assumption 4(a)
could also be hopefully relaxed by an invertible transfor-
mation from any positive semi-definite D into the required
form, effectively converting the dynamics into an equivalent
regular one. We leave further investigations as future work.

4 Simulation as ParVIs
The unified framework (Theorem 5) recognizes an MCMC
dynamics as an fGH flow on the Wasserstein space P(M)
of an fRP manifold M, expressed in Eq. (11) explicitly.
Lemma 1 gives another equivalent dynamics that leads to the
same flow on P(M). These findings enable us to simulate
these flow-based dynamics for an MCMC method, using
existing finite-particle flow simulation methods in the ParVI
field. This hybrid of ParVI and MCMC largely extends
the ParVI family with various dynamics, and also gives
advantages like particle-efficiency to MCMCs.

We select the SGHMC dynamics as an example and develop
its particle-based simulations. With p(r|θ) = N (0,Σ) for a
constant Σ, r and θ become independent, and Eq. (12) from

Lemma 1 becomes:{
dθ
dt = Σ−1r,
dr
dt = ∇θ log p(θ)− CΣ−1r − C∇r log q(r).

(13)

From the other equivalent dynamics given by the framework
(Theorem 5), the fGH flow (Eq. (11)) for SGHMC is:{

dθ
dt = Σ−1r +∇r log q(r),
dr
dt = ∇θlog p(θ)−CΣ−1r−C∇rlog q(r)−∇θlog q(θ).

(14)

The key problem in simulating these flow-based dynamics
with finite particles is that the density q is unknown. Liu et al.
(2019) give a summary on the solutions in the ParVI field,
and find that they are all based on a smoothing treatment,
in a certain formulation of either smoothing the density or
smoothing functions. Here we adopt the Blob method (Chen
et al., 2018a) that smooths the density. With a set of particles
{r(i)}i of q(r), Blob makes the following approximation
with a kernel function Kr for r:

−∇rlog q(r(i))≈ −
∑
k∇r(i)K

(i,k)
r∑

jK
(i,j)
r

−
∑
k

∇r(i)K
(i,k)
r∑

jK
(j,k)
r

, (15)

where K
(i,j)
r := Kr(r

(i), r(j)). Approximation for
−∇θ log q(θ) can be established in a similar way.
The vanilla SGHMC simulates dynamics (13) with
−C∇r log q(r) dt replaced by N (0, 2C dt), but dynam-
ics (14) cannot be simulated in a similar stochastic way.
More discussions are provided in Appendix B.

We call the ParVI simulations of the two dynamics as
pSGHMC-det (Eq. (13)) and pSGHMC-fGH (Eq. (14)), re-
spectively (“p” for “particle”). Compared to the vanilla
SGHMC, the proposed methods could converge faster and
be more particle-efficient with deterministic update and ex-
plicit repulsive interaction (Eq. (15)). On the other hand,
SGHMC could make a more efficient exploration and con-
verges faster than LD, so our methods could speed up over
Blob. One may note that pSGHMC-det resembles a direct
application of stochastic gradient descent with momentum
(Sutskever et al., 2013) to Blob. We stress that this appli-
cation is inappropriate since Blob minimizes KLp on the
infinite-dimensional manifold P(M) instead of a function
onM. Moreover, the two methods can be nourished with
advanced techniques in the ParVI field. This includes the
HE bandwidth selection method and acceleration frame-
works by Liu et al. (2019), and other approximations to
−∇ log q like SVGD and GFSD/GFSF (Liu et al., 2019).

5 Experiments
Detailed experimental settings are provided in Appendix C,
and codes are available at https://github.com/
chang-ml-thu/FGH-flow.

5.1 Synthetic Experiment
We show in Fig. 3 the equivalence of various dynamics simu-
lations, and the advantages of pSGHMC-det and pSGHMC-

https://github.com/chang-ml-thu/FGH-flow
https://github.com/chang-ml-thu/FGH-flow
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Figure 3. Dynamics simulation results. Rows correspond to Blob,
SGHMC, pSGHMC-det, pSGHMC-fGH, respectively. All meth-
ods adopt the same step size 0.01, and SGHMC-related methods
share the same Σ−1 = 1.0, C = 0.5. In each row, figures are plot-
ted for every 300 iterations, and the last one for 10,000 iterations.
The HE method (Liu et al., 2019) is used for bandwidth selection.

fGH. We first find that all methods eventually produce prop-
erly distributed particles, demonstrating their equivalence.
For ParVI methods, both proposed methods (Rows 3, 4)
converge faster than Blob (Row 1), indicating the benefit of
using SGHMC dynamics over LD, where the momentum
accumulates in the vertical direction. For the same SGHMC
dynamics, we see that our ParVI versions (Rows 3, 4) con-
verge faster than the vanilla stochastic version (Row 2), due
to the deterministic update rule. Moreover, pSGHMC-fGH
(Row 4) enjoys the HE bandwidth selection method (Liu
et al., 2019) for ParVIs, which makes the particles neatly
and regularly aligned thus more representative for the distri-
bution. pSGHMC-det (Row 3) does not benefit much from
HE since the density on particles, q(θ), is not directly used
in the dynamics (13).

5.2 Latent Dirichlet Allocation (LDA)
We study the advantages of our pSGHMC methods in the
real-world task of posterior inference for LDA. We follow
the same settings as Liu et al. (2019) and Chen et al. (2014).
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Figure 4. Performance on LDA with the ICML data set. Results
are averaged over 10 runs. All methods share the same step size
0.001 and parameters Σ−1 = 300 and C = 0.1.
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Figure 5. Performance on BNN with MNIST data set. Results av-
eraged over 10 runs. SGHMC-related methods share parameters.

We see from Fig. 4(a) the saliently faster convergence over
Blob, benefited from the usage of SGHMC dynamics in the
ParVI field. Particle-efficiency is compared in Fig. 4(b),
where we find the better results of pSGHMC methods over
vanilla SGHMC under a same particle size. This demon-
strates the advantage of ParVI simulation of MCMC dynam-
ics, where particle interaction is directly considered to make
full use of a set of particles.

5.3 Bayesian Neural Networks (BNNs)
We investigate our methods in the supervised task of training
BNNs. We follow the settings of Chen et al. (2014) with
slight modification explained in Appendix. Results in Fig. 5
is consistent with our claim: pSGHMC methods converge
faster than Blob due to the usage of SGHMC dynamics.
Their slightly better particle-efficiency can also be observed.

6 Conclusions
We construct a theoretical framework that connects general
MCMC dynamics with flows on the Wasserstein space. By
introducing novel concepts, we find that a regular MCMC
dynamics corresponds to an fGH flow for an fRP manifold.
The framework gives a clear picture on the behavior of vari-
ous MCMC dynamics, and also enables ParVI simulation
of MCMC dynamics. We group existing MCMC dynamics
into 3 types under the framework and analyse their behavior,
and develop two ParVI methods for the SGHMC dynamics.
We empirically demonstrate the faster convergence by more
general MCMC dynamics for ParVIs, and particle-efficiency
by ParVI simulation for MCMCs.
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Appendix
A. Proofs
A.1. PROOF OF LEMMA 1
Given the dynamics (1), the distribution curve (qt)t is gov-
erned by the Fokker-Planck equation (e.g., Risken (1996)):

∂tqt = −∂i(qtV i) + ∂i∂j(qtD
ij),

which reduces to:
∂tqt =− (∂iqt)V

i − qt(∂iV i)
+ qt(∂i∂jD

ij) + (∂i∂jqt)D
ij

+ (∂iqt)(∂jD
ij) + (∂jqt)(∂iD

ij)

=− (∂iqt)(∂jD
ij + ∂jQ

ij)− (∂iqt)(D
ij +Qij)

∂jp

p

− qt∂i∂j(Dij +Qij)− qt(∂iDij + ∂iQ
ij)
∂jp

p

− qt(Dij +Qij)(
∂i∂jp

p
− (∂ip)(∂jp)

p2
)

+ qt(∂i∂jD
ij) + (∂i∂jqt)D

ij

+ (∂iqt)(∂jD
ij) + (∂jqt)(∂iD

ij)

= (∂iqt −
qt
p
∂ip)(∂jD

ij − ∂jQij)

− 1

p
(∂iqt)(∂jp)(D

ij +Qij)

− qt
p

(∂i∂jp)D
ij +

qt
p2

(∂ip)(∂jp)D
ij + (∂i∂jqt)D

ij ,

where we have used the symmetry of D and
skew-symmetry of Q in the last equality:
(∂jp)(∂iD

ij) = (∂ip)(∂jD
ji) = (∂ip)(∂jD

ij)
and similarly (∂jp)(∂iQ

ij) = −(∂ip)(∂jQ
ij);

∂i∂jQ
ij = ∂j∂iQ

ji = −∂i∂jQij so ∂i∂jQ
ij = 0

and similarly (∂ip)(∂jp)Q
ij = 0, (∂i∂jp)Q

ij = 0.

The deterministic dynamics in the theorem dx = Wt(x) dt
with Wt(x) defined in Eq. (7) induces the curve:
∂tqt =− ∂i(qt(Wt)

i)

=− (∂iqt)(Wt)
i − qt(∂i(Wt)

i)

=− (∂iqt)D
ij(
∂jp

p
− ∂jqt

qt
)

− (∂iqt)Q
ij(
∂jp

p
)− (∂iqt)(∂jQ

ij)

− qt(∂iDij)(
∂jp

p
− ∂jqt

qt
)

− qtDij(
∂i∂jp

p
− (∂jp)(∂ip)

p2
− ∂i∂jqt

qt
+

(∂jqt)(∂iqt)

q2
t

)

− qt(∂iQij)
∂jp

p
− qtQij(

∂i∂jp

p
− (∂jp)(∂ip)

p2
)

− qt(∂i∂jQij)

= (∂iqt −
qt
p
∂ip)(∂jD

ij − ∂jQij)

− 1

p
(∂iqt)(∂jp)(D

ij +Qij)

− qt
p

(∂i∂jp)D
ij +

qt
p2

(∂ip)(∂jp)D
ij + (∂i∂jqt)D

ij ,

where we have also applied aforementioned properties in
the last equality. Now we see that the two dynamics induce
the same distribution curve thus they are equivalent.

A.2. DERIVATION OF EQ. (8)
Barbour’s generator is understood as the directional deriva-
tive (Af)(x) = d

dtFf (qt)
∣∣∣
q0=δx
t=0

on P(RM ). Due to the

definition of gradient, this can be written as (Af)(x) =
〈gradFf , πq0(W0)〉Tq0P = 〈gradFf ,W0〉L2

q0

, where

πq0(W0) is the tangent vector of the distribution curve (qt)t
at time 0 due to Lemma 1, and the last equality holds due
to that πq is the orthogonal projection from L2

q to TqP and
gradFf ∈ Tq0P (see Section 2.2.1).

Before going on, we first introduce the notion of weak
derivative (e.g., Nicolaescu (2007), Def. 10.2.1) of a distri-
bution. For a distribution with a smooth density function q
and a smooth function f ∈ C∞c (RM ), the rule of integration
by parts tells us:∫

RM
f(x)(∂iq(x)) dx =

∫
RM

∂i(f(x)q(x)) dx

−
∫
RM

(∂if(x))q(x) dx.

Due to Gauss’s theorem (e.g., Abraham et al.
(2012), Thm. 8.2.9),

∫
RM ∂i(f(x)q(x)) dx =

limR→+∞
∫
SM−1(R)

(f(y)q(y))vi(y) dy, where SM−1(R)

is the (M − 1)-dimensional sphere in RM with radius
R, y ∈ SM−1, and vi is the i-th component of the unit
normal vector v (pointing outwards) on SM−1(R). Since f
is compactly supported and lim‖x‖→+∞ q(x) = 0, after a
sufficiently large R, f(y)q(y) = 0, so the integral vanishes,
and we have:∫

RM
f(x)(∂iq(x)) dx = −

∫
RM

(∂if(x))q(x) dx,

∀f ∈ C∞c (RM ).

We can use this property as the definition of ∂iq for non-
absolutely-continuous distributions, like the Dirac measure
δx0

:∫
RM

f(x)(∂iδx0
(x)) dx :=

∫
RM

(∂if(x))δx0
(x) dx

=∂if(x0).

Now we begin the derivation. Using the form in Eq. (7) and
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noting q0 = δx0
, we have:

(Af)(x0) = 〈gradFf ,W0〉L2
q0

=Eq0(x)[〈grad f(x),W0(x)〉RM ] = Eq0 [(∂if)W i
0]

=Eq0
[
Dij(∂if)

(
∂j log(p/q0)

)
+Qij(∂if)(∂j log p)

+ (∂jQ
ij)(∂if)

]
=

[
Dij(∂if)(∂j log p)

]
(x0)

−
∫
RM

(
Dij(∂if)

)
(x)(∂jq0)(x) dx

+
[
Qij(∂if)(∂j log p) + (∂jQ

ij)(∂if)
]
(x0)

=

[
Dij(∂if)(∂j log p) +

1

p
∂j(pQ

ij)(∂if)

]
(x0)

+

∫
RM

∂j
(
Dij(∂if)

)
(x)q0(x) dx

=

[
Dij(∂if)(∂j log p) +

1

p
∂j(pQ

ij)(∂if)

]
(x0)

+
[
∂j
(
Dij(∂if)

)]
(x0)

=

[
Dij(∂if)(∂j log p) +

1

p
∂j(pQ

ij)(∂if)

+ (∂jD
ij)(∂if) +Dij(∂i∂jf)

]
(x0)

=

[
1

p
∂j
(
p(Dij +Qij)

)
(∂if) +Dij(∂i∂jf)

]
(x0)

=

[
1

p
∂j
(
p(Dij +Qij)

)
(∂if) + (Dij +Qij)(∂i∂jf)

]
(x0)

=

[
1

p
∂j
[
p
(
Dij +Qij

)
(∂if)

]]
(x0),

where the second last equality holds due to Qij(∂i∂jf) = 0
from the skew-symmetry of Q. This completes the deriva-
tion.

A.3. PROOF OF LEMMA 2
Noting that the KL divergence KLp(q) =

∫
M log(q/p) dq

is a non-linear function on P(M), we need to first find its
linearization. We fix a point q0 ∈ P(M). Eq. (2) gives its
gradient at q0: grad KLp(q0) = grad log(q0/p). Consider
the linear function on P(M):

F : q 7→
∫
M

log(q0/p) dq.

According to existing knowledge (e.g., Villani (2008),
Ex. 15.10; Ambrosio et al. (2008), Lem. 10.4.1; Santambro-
gio (2017), Eq. 4.10), its gradient at q0 is given by:(

gradF
)
(q0) = grad

(
δF

δq

∣∣∣∣
q=q0

)
,

where δF
δq is the first functional variation of F , which is

log(q0/p) at q = q0. Now we find that gradF (q0) =
grad log(q0/p) = grad KLp(q0), so F (q) is the lineariza-
tion of KLp(q) at q = q0 and the corresponding f ∈

C∞c (M) in Eq. (6) is log(q0/p). Then we have:
XKLp(q0) = πq0(Xlog(q0/p)).

Referring to Eq. (4), Xlog(q0/p) = βij∂j log(q0/p)∂i. Due
to the generality of q0, this completes the proof.

A.4. PROOF OF THEOREM 5
For a fixed q ∈ P(M), two vector fields on M produce
the same distribution curve if they have the same projection
on TqP(M), so showing πq(W ) = WKLp(q) is sufficient
for showing the equivalence of the two dynamics. This
in turn is equivalent to show πq(W − WKLp(q)) = 0L2

q
,

or div
(
q(W − WKLp(q))

)
= div(q0L2

q
) = 0 (see Sec-

tion 2.2.1).

We first consider case (b): given an fRP manifold (M, g̃, β),
we define an MCMC dynamics whose diffusion matrix D
and curl matrixQ are the coordinate expressions of the fiber-
Riemannian structure (g̃ij) and the Poisson structure (βij),
respectively. It is regular, as Assumption 4 is satisfied due to
properties of (g̃ij) (see Eq. (9)) and (βij) (see Section 2.2.2).
Its equivalent deterministic dynamics at q (see Lemma 1) is
given by:

W i = g̃ij∂j log(p/q) + βij∂j log p+ ∂jβ
ij .

So we have:
div
(
q(W −WKLp(q))

)
= div

(
q
(
g̃ij∂j log(p/q) + βij∂j log p+ ∂jβ

ij

− (g̃ij + βij)∂j log(p/q)
)
∂i

)
= div

(
q(∂jβ

ij + βij∂j log q)∂i
)

= div
(
(q∂jβ

ij + βij∂jq)∂i
)

= div
(
∂j(qβ

ij)∂i
)

=∂i∂j(qβ
ij)

=0,

where the last equality holds due to the skew-symmetry
of (βij). This shows that the constructed regular MCMC
dynamics is equivalent to the fiber-gradient Hamiltonian
flowWKLp onM.

For case (a), given any regular MCMC dynamics whose
matrices (D,Q) satisfy Assumption 4, we can define an
fRP manifold (M, g̃, β) whose structures are defined in
the coordinate space by the matrices: g̃ij := Dij , βij :=
Qij . Assumption 4 guarantees that such g̃ is a valid fiber-
Riemannian structure and β a valid Poisson structure. On
this constructed manifold, we follow the above procedure to
construct a regular MCMC dynamics equivalent to the fGH
flowWKLp on it, whose equivalent deterministic dynamics
is:

W i = Dij∂j log(p/q) +Qij∂j log p+ ∂jQ
ij ,

which is exactly the one of the original MCMC dynamics.
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This shows that the original regular MCMC dynamics is
equivalent to the fGH flowWKLp on the constructed fRP
manifold.

Finally, statement (c) is verified in both cases by the intro-
duced construction. This completes the proof.

B. Details on Flow Simulation of SGHMC Dynamics
We first introduce more details on the Blob method, refer-
ring to the works of Chen et al. (2018a) and Liu et al. (2019).
The key problem in simulating a general flow on the Wasser-
stein space is to estimate the gradient u(x) := −∇ log q(x)
where q(x) is the distribution corresponding to the current
configuration of the particles. The gradient has to be esti-
mated using the finite particles {x(i)}Ni=1 distributed obey-
ing q(x). The analysis of Liu et al. (2019) finds that an
estimate method has to make a smoothing treatment, in the
form of either smoothing the density or smoothing functions.
The Blob method (Chen et al., 2018a) first reformulates u(x)
in a variation form:

u(x) = ∇
(
− δ

δq
Eq[log q]

)
,

then with a kernel function K, it replaces the density in the
log q term with a smoothed one:

u(x) ≈∇
(
− δ

δq
Eq[log(q ∗K)]

)
=−∇ log(q ∗K)−∇

(
q

(q ∗K)
∗K

)
,

where “*” denotes convolution. This form enjoys the benefit
of enabling the usage of the empirical distribution: take
q(x) = q̂(x) := 1

N

∑N
i=1 δx(i)(x), with δx(i)(x) denoting

the Dirac measure at x(i). The above formulation then
becomes:

u(x(i)) =−∇xlog q(x(i))

≈−
∑
k∇x(i)K(i,k)∑
jK

(i,j)
−
∑
k

∇x(i)K(i,k)∑
jK

(j,k)
,

where K(i,j) := K(x(i), x(j)). This coincides with
Eq. (15).

The vanilla SGHMC dynamics replaces the dynamics
dr = −C∇r log q(r) dt in Eq. (13) with dr = 2C dBt
or more intuitively dr = N (0, 2C dt), where Bt denotes
the standard Brownian motion. The equivalence between
these two dynamics can also be directly derived from the
Fokker-Planck equation: the first one produces a curve by
∂tqt = −∂i

(
qt(−Cij∂j log qt)

)
= ∂i(C

ij∂jqt), and the
second one by ∂tqt = ∂i∂j(qtC

ij) = ∂i(C
ij∂jqt) for a

constant C, so the two curves coincides. But dynamics (14)
cannot be simulated in a stochastic way, since −∇r log q(r)
and −∇θ log q(θ) are used to update θ and r, respectively,
that is, the correspondence of gradients and variables is
switched. In this case, estimating the gradient cannot be
avoided.

Finally, we write the explicit update rule of the proposed
methods using Blob with particles {(θ, r)(i)}Ni=1. Let Kθ,
Kr be the kernel functions for θ and r, and ε be a step size.
The update rule for pSGHMC-det in Eq. (13) becomes:
θ(i) ← θ(i) + εΣ−1r(i),

r(i) ← r(i) + ε∇θ log p(θ(i))

− εC
(

Σ−1r(i) +
∑
k∇r(i)K

(i,k)
r∑

jK
(i,j)
r

+
∑
k

∇
r(i)

K(i,k)
r∑

jK
(j,k)
r

)
,

and for pSGHMC-fGH in Eq. (14):

θ(i) ← θ(i)+ε
(

Σ−1r(i)+
∑
k∇r(i)K

(i,k)
r∑

jK
(i,j)
r

+
∑
k

∇
r(i)

K(i,k)
r∑

jK
(j,k)
r

)
,

r(i) ← r(i) + ε∇θlog p(θ(i))

− ε
(∑

k∇θ(i)K
(i,k)
θ∑

jK
(i,j)
θ

+
∑
k

∇
θ(i)

K
(i,k)
θ∑

jK
(j,k)
θ

)
− εC

(
Σ−1r(i) +

∑
k∇r(i)K

(i,k)
r∑

jK
(i,j)
r

+
∑
k

∇
r(i)

K(i,k)
r∑

jK
(j,k)
r

)
,

where K(i,j)
θ := Kθ(θ

(i), θ(j)) and similarly for K(i,j)
r .

C. Detailed Settings of Experiments
C.1. DETAILED SETTINGS OF THE SYNTHETIC
EXPERIMENT

For the random variable x = (x1, x2), the target distribution
density p(x) is defined by:

log p(x) =− 0.01×
(

1

2
(x2

1 + x2
2) +

0.8

2
(25x1 + x2

2)2

)
+ const,

which is inspired by the target distribution used in the work
of Girolami & Calderhead (2011). We use the exact gradient
of the log density instead of stochastic gradient. Fifty parti-
cles are used, which are initialized by N

(
(−2,−7), 0.52I

)
.

The window range is (−7, 3) horizontally and (−9, 9) verti-
cally. See the caption of Fig. 3 for other settings.

C.2. DETAILED SETTINGS OF THE LDA EXPERIMENT

We follow the same settings as Ding et al. (2014), which is
also adopted in Liu et al. (2019). The data set is the ICML
data set2 developed by Ding et al. (2014). We use 90%
words in each document to train the topic proportion of the
document and the left 10% words for evaluation. A random
80%-20% train-test split of the data set is conducted in each
run.

For the LDA model, parameters of the Dirichlet prior of
topics is α = 0.1. The mean and standard deviation of
the Gaussian prior on the topic proportions is β = 0.1 and
σ = 1.0. Number of topics is 30 and batch size is fixed
as 100. The number of Gibbs sampling in each stochastic
gradient evaluation is 50.

All the inference methods share the same step size ε = 1×
10−3. SGHMC-related methods (SGHMC, pSGHMC-det

2https://cse.buffalo.edu/˜changyou/code/
SGNHT.zip

https://cse.buffalo.edu/~changyou/code/SGNHT.zip
https://cse.buffalo.edu/~changyou/code/SGNHT.zip
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and pSGHMC-fGH) share the same parameters Σ−1 = 300
and C = 0.1. ParVI methods (Blob, pSGHMC-det and
pSGHMC-fGH) use the HE method for kernel bandwidth
selection (Liu et al., 2019). To match the fashion of ParVI
methods, SGHMC is run with parallel chains and the last
samples of each chain are collected.

C.3. DETAILED SETTINGS OF THE BNN EXPERIMENT

We use a 784-100-10 feedforward neural network with sig-
moid activation function. The batch size is 500. SGHMC,
pSGHMC-det and pSGHMC-fGH share the same parame-
ters ε = 5 × 10−5, Σ−1 = 1.0 and C = 1.0, while Blob
uses ε = 5 × 10−8 (larger ε leads to diverged result). For
the ParVI methods, we find the median method and the HE
method for bandwidth selection perform similarly, and we
adopt the median method for faster implementation.


