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 Molecular properties: interaction among electrons and atomic nuclei.

 DFT: solve electronic structure hence properties.

 Hamiltonian: raw DFT solution, derive all properties.

 Hamiltonian prediction:

“root property” prediction, provide all properties that DFT can.
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 Hamiltonian prediction has a self-consistency principle: Training without label!

 Distinction from common property prediction: data-free training / self-improvement.

 Compensating data scarcity with scientific laws.

 Unique benefits:

 Exact generalization to arbitrary workload beyond labeled data (also for other properties).

 Amortization of DFT calculation: more efficient than running DFT to generate labels.

 Extending applicable scale of Hamiltonian prediction.
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≔∇𝐸ℳ ⋅ ȁ

𝐂𝐂⊤

= 𝐒ℳ  𝐂 𝛜. Kohn-Sham equation
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 Not just a regularization: it determines the DFT solution (label).

 Minimizing the gap unnecessarily drives ෡𝐇𝜃 ℳ  towards 𝐇ℳ 𝐂ℳ
෡𝐇𝜃 ℳ :

 The latter may even be farther from the solution, in which case both are driven to the solution.

 Should not apply stop-gradient to the latter.

 Numerically stable implementation of differentiation through eigensolver.

 GPU implementation of Hamiltonian construction 𝐇ℳ 𝐂 .



Unique Benefits

1. Generalization beyond labeled data: ℒlabel 𝜃; 𝒟 1 + 𝜆 ℒself−con 𝜃; 𝒟 2 .

limited labeled dataset unlimited unlabeled dataset



Unique Benefits

1. Generalization beyond labeled data: ℒlabel 𝜃; 𝒟 1 + 𝜆 ℒself−con 𝜃; 𝒟 2 .

2. Amortization effect: efficiency over DFT labeling.

Cost of one iteration:

ℳ 1  ℳ 2  ℳ 11  ℳ 10  ℳ 3  ℳ 4  ℳ 5  ℳ 6  ℳ 7  ℳ 8  ℳ 9  ℳ 12  

limited labeled dataset unlimited unlabeled dataset

Training molecules:



Unique Benefits

1. Generalization beyond labeled data: ℒlabel 𝜃; 𝒟 1 + 𝜆 ℒself−con 𝜃; 𝒟 2 .

2. Amortization effect: efficiency over DFT labeling.

DFT calculation:

Cost of one iteration:

ℳ 1  ℳ 2  ℳ 11  ℳ 10  ℳ 3  ℳ 4  ℳ 5  ℳ 6  ℳ 7  ℳ 8  ℳ 9  ℳ 12  

limited labeled dataset unlimited unlabeled dataset

Training molecules:

supervision



Unique Benefits

1. Generalization beyond labeled data: ℒlabel 𝜃; 𝒟 1 + 𝜆 ℒself−con 𝜃; 𝒟 2 .

2. Amortization effect: efficiency over DFT labeling.

Self-consistency training:

DFT calculation:
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 OOD scenario:
labeled small molecules + finetune on unlabeled large molecules → test on large molecules.

Final performance: self-consistency training gives better derived molecular properties!



Training Efficiency by Amortization

 Direct efficiency comparison with DFT:

time for solving MD17 structures under the same stopping criteria.
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Extending Applicable Scale of Hamiltonian Prediction

 Labeled QH9 molecules (≤ 31 atoms) + Finetune on unlabeled larger molecules

→ Test on larger molecules (MD22).

 Outperform end-to-end property predictors: merit of scientific-law supervision!

42 atoms

56 atoms
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