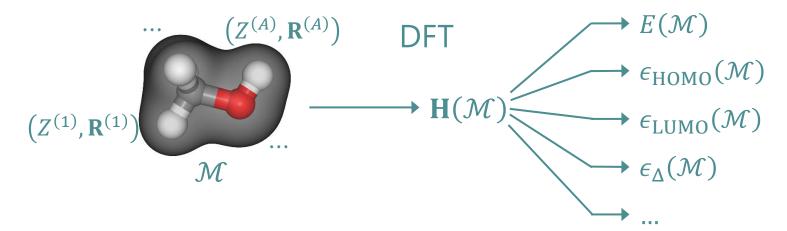
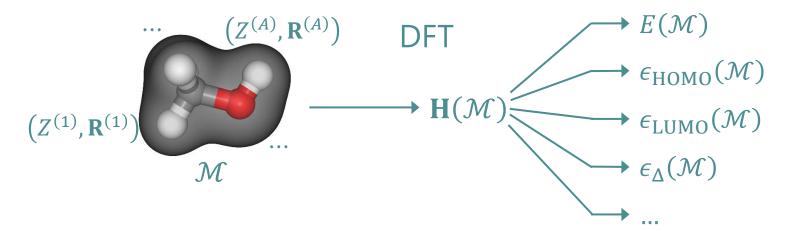
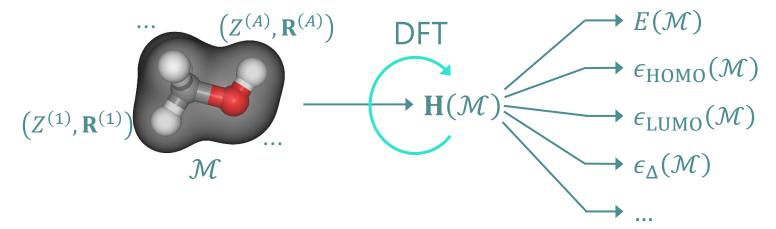


Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction

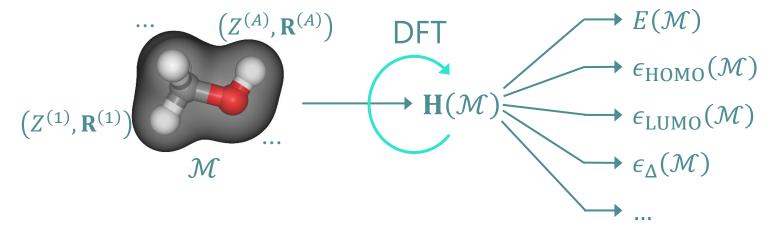

Chang Liu on behalf of the team changliu@microsoft.com


· Molecular properties: interaction among electrons and atomic nuclei.

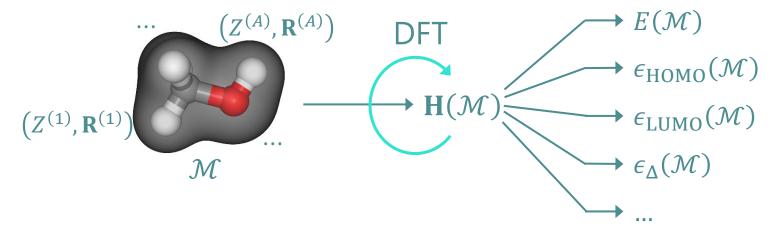
- Molecular properties: interaction among electrons and atomic nuclei.
- DFT: solve electronic structure hence properties.

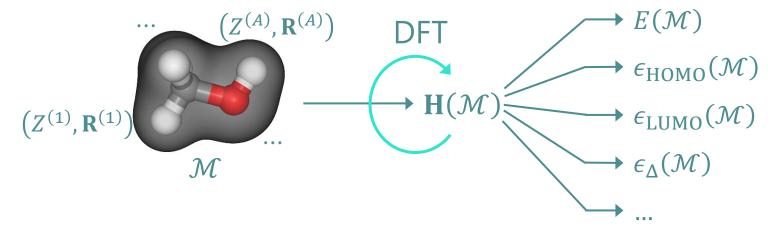


- Molecular properties: interaction among electrons and atomic nuclei.
- DFT: solve electronic structure hence properties.
- · Hamiltonian: raw DFT solution, derive all properties.



- · Molecular properties: interaction among electrons and atomic nuclei.
- DFT: solve electronic structure hence properties.
- · Hamiltonian: raw DFT solution, derive all properties.
- Hamiltonian prediction:


"root property" prediction, provide all properties that DFT can.


- · Hamiltonian prediction has a self-consistency principle: Training without label!
 - · Distinction from common property prediction: data-free training / self-improvement.
 - · Compensating data scarcity with scientific laws.

- · Hamiltonian prediction has a self-consistency principle: Training without label!
 - · Distinction from common property prediction: data-free training / self-improvement.
 - · Compensating data scarcity with scientific laws.
- Unique benefits:
 - · Exact generalization to arbitrary workload beyond labeled data (also for other properties).

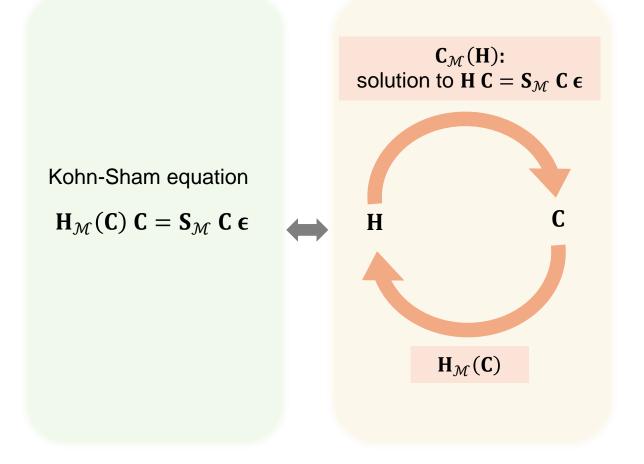
- · Hamiltonian prediction has a self-consistency principle: Training without label!
 - · Distinction from common property prediction: data-free training / self-improvement.
 - · Compensating data scarcity with scientific laws.
- Unique benefits:
 - Exact generalization to arbitrary workload beyond labeled data (also for other properties).
 - · Amortization of DFT calculation: more efficient than running DFT to generate labels.

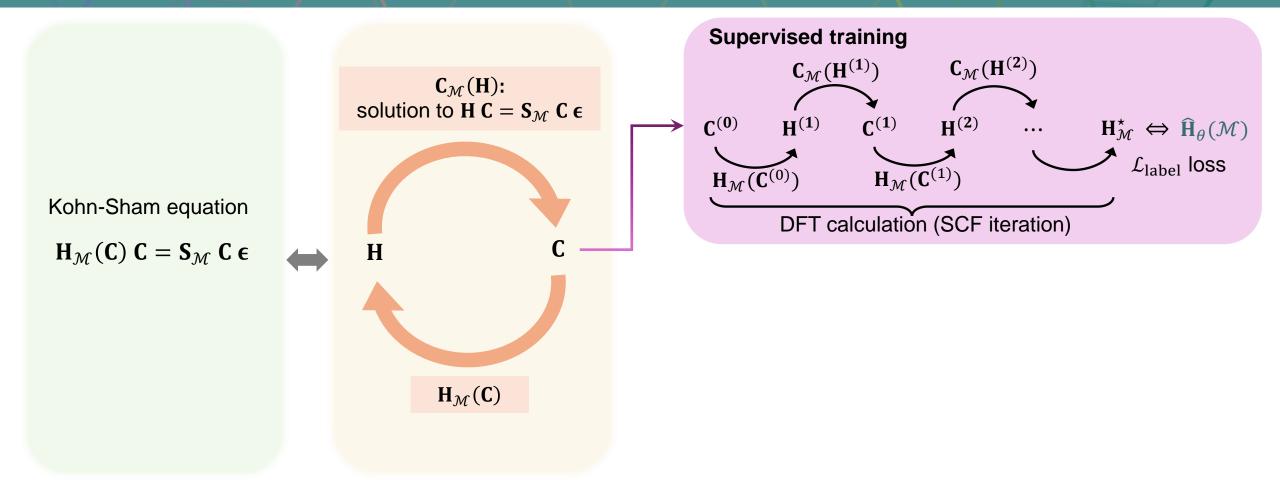
- · Hamiltonian prediction has a self-consistency principle: Training without label!
 - · Distinction from common property prediction: data-free training / self-improvement.
 - · Compensating data scarcity with scientific laws.
- Unique benefits:
 - Exact generalization to arbitrary workload beyond labeled data (also for other properties).
 - · Amortization of DFT calculation: more efficient than running DFT to generate labels.
 - Extending applicable scale of Hamiltonian prediction.

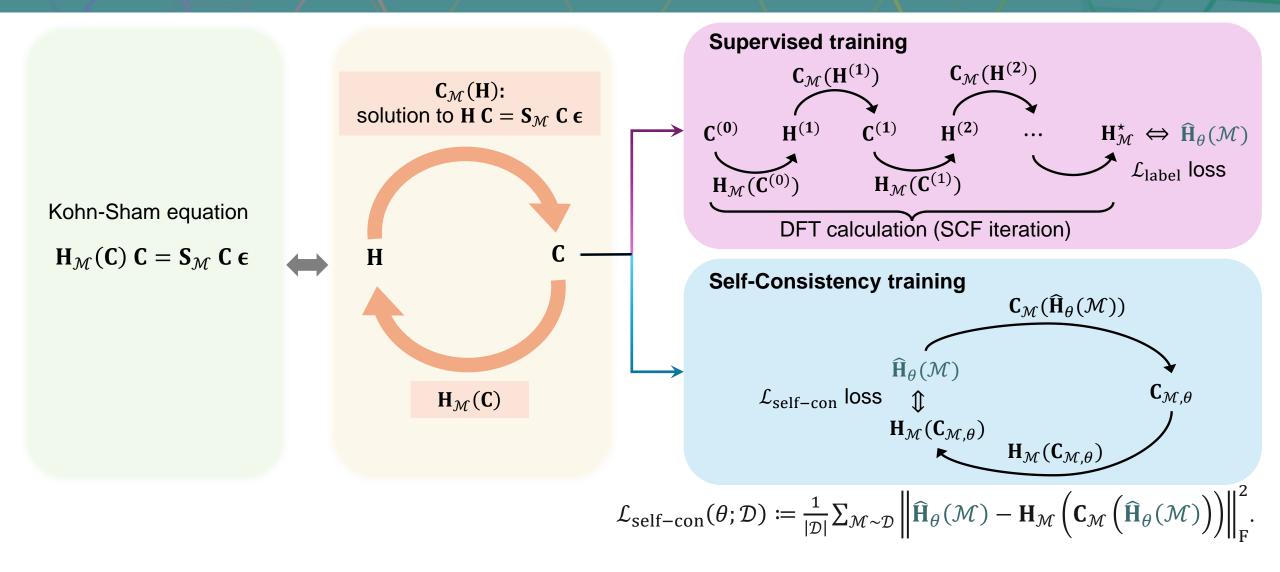
• Describe the *N*-electron state by orbitals $\{\phi_i(\mathbf{r})\}_{i=1}^N$.

- Describe the *N*-electron state by orbitals $\{\phi_i(\mathbf{r})\}_{i=1}^N$.
- Expressed as coefficients **C** under a basis set: $\phi_i(\mathbf{r}) = \sum_{\alpha=1}^{B} \mathbf{C}_{\alpha i} \eta_{\mathcal{M},\alpha}(\mathbf{r})$.

- Describe the *N*-electron state by orbitals $\{\phi_i(\mathbf{r})\}_{i=1}^N$.
- Expressed as coefficients **C** under a basis set: $\phi_i(\mathbf{r}) = \sum_{\alpha=1}^{B} \mathbf{C}_{\alpha i} \eta_{\mathcal{M},\alpha}(\mathbf{r})$.
- Solve for **C** by minimizing $E_{\mathcal{M}}(\mathbf{C}\mathbf{C}^{\mathsf{T}})$, s.t. $\mathbf{C}^{\mathsf{T}}\mathbf{S}_{\mathcal{M}}\mathbf{C} = \mathbf{I}$.
 - · $E_{\mathcal{M}}(\mathbf{C}\mathbf{C}^{\mathsf{T}})$ is a known, explicit function (given an approximate XC functional).
 - $\cdot (\mathbf{S}_{\mathcal{M}})_{\alpha\beta} \coloneqq \langle \eta_{\mathcal{M},\alpha} | \eta_{\mathcal{M},\beta} \rangle.$


- Describe the *N*-electron state by orbitals $\{\phi_i(\mathbf{r})\}_{i=1}^N$.
- Expressed as coefficients **C** under a basis set: $\phi_i(\mathbf{r}) = \sum_{\alpha=1}^{B} \mathbf{C}_{\alpha i} \eta_{\mathcal{M},\alpha}(\mathbf{r})$.
- Solve for **C** by minimizing $E_{\mathcal{M}}(\mathbf{C}\mathbf{C}^{\mathsf{T}})$, s.t. $\mathbf{C}^{\mathsf{T}}\mathbf{S}_{\mathcal{M}}\mathbf{C} = \mathbf{I}$.
 - · $E_{\mathcal{M}}(\mathbf{C}\mathbf{C}^{\mathsf{T}})$ is a known, explicit function (given an approximate XC functional).
 - $\cdot (\mathbf{S}_{\mathcal{M}})_{\alpha\beta} \coloneqq \langle \eta_{\mathcal{M},\alpha} | \eta_{\mathcal{M},\beta} \rangle.$
- Solve the optimization problem: $\nabla_{\mathbf{C}} [E_{\mathcal{M}}(\mathbf{C}\mathbf{C}^{\mathsf{T}}) \operatorname{tr}((\mathbf{C}^{\mathsf{T}}\mathbf{S}_{\mathcal{M}}\mathbf{C} \mathbf{I})\mathbf{\epsilon})] = 0$


- Describe the *N*-electron state by orbitals $\{\phi_i(\mathbf{r})\}_{i=1}^N$.
- Expressed as coefficients **C** under a basis set: $\phi_i(\mathbf{r}) = \sum_{\alpha=1}^{B} \mathbf{C}_{\alpha i} \eta_{\mathcal{M},\alpha}(\mathbf{r})$.
- Solve for **C** by minimizing $E_{\mathcal{M}}(\mathbf{C}\mathbf{C}^{\mathsf{T}})$, s.t. $\mathbf{C}^{\mathsf{T}}\mathbf{S}_{\mathcal{M}}\mathbf{C} = \mathbf{I}$.
 - · $E_{\mathcal{M}}(\mathbf{C}\mathbf{C}^{\mathsf{T}})$ is a known, explicit function (given an approximate XC functional).
 - $\cdot (\mathbf{S}_{\mathcal{M}})_{\alpha\beta} \coloneqq \langle \eta_{\mathcal{M},\alpha} | \eta_{\mathcal{M},\beta} \rangle.$
- Solve the optimization problem: $\nabla_{\mathbf{C}} [E_{\mathcal{M}}(\mathbf{C}\mathbf{C}^{\mathsf{T}}) \operatorname{tr}((\mathbf{C}^{\mathsf{T}}\mathbf{S}_{\mathcal{M}}\mathbf{C} \mathbf{I})\mathbf{\epsilon})] = 0$


$$\underbrace{H_{\mathcal{M}}(\mathbf{C})}_{:=\nabla E_{\mathcal{M}}(\cdot)|_{\mathbf{C}\mathbf{C}^{\mathsf{T}}}} \mathbf{C} = \mathbf{S}_{\mathcal{M}} \mathbf{C} \boldsymbol{\epsilon}.$$
 Kohn-Sham equation

Kohn-Sham equation

 $\mathbf{H}_{\mathcal{M}}(\mathbf{C}) \, \mathbf{C} = \mathbf{S}_{\mathcal{M}} \, \mathbf{C} \, \boldsymbol{\epsilon}$

Self-Consistency Training

• Self-consistency loss:

$$\mathcal{L}_{\text{self-con}}(\theta; \mathcal{D}) \coloneqq \frac{1}{|\mathcal{D}|} \sum_{\mathcal{M} \sim \mathcal{D}} \left\| \widehat{\mathbf{H}}_{\theta}(\mathcal{M}) - \mathbf{H}_{\mathcal{M}}\left(\mathbf{C}_{\mathcal{M}}\left(\widehat{\mathbf{H}}_{\theta}(\mathcal{M}) \right) \right) \right\|_{F}^{2}.$$

• Not just a regularization: it **determines** the DFT solution (label).

Self-Consistency Training

· Self-consistency loss:

$$\mathcal{L}_{\text{self-con}}(\theta; \mathcal{D}) \coloneqq \frac{1}{|\mathcal{D}|} \sum_{\mathcal{M} \sim \mathcal{D}} \left\| \widehat{\mathbf{H}}_{\theta}(\mathcal{M}) - \mathbf{H}_{\mathcal{M}}\left(\mathbf{C}_{\mathcal{M}}\left(\widehat{\mathbf{H}}_{\theta}(\mathcal{M}) \right) \right) \right\|_{F}^{2}.$$

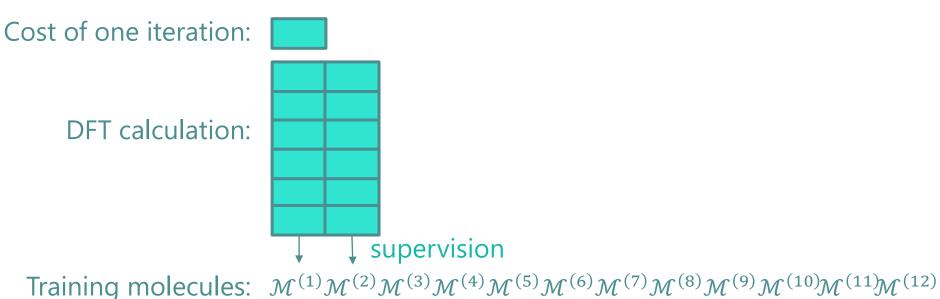
- Not just a regularization: it **determines** the DFT solution (label).
- Minimizing the gap **unnecessarily** drives $\widehat{\mathbf{H}}_{\theta}(\mathcal{M})$ towards $\mathbf{H}_{\mathcal{M}}(\mathbf{C}_{\mathcal{M}}(\widehat{\mathbf{H}}_{\theta}(\mathcal{M})))$:
 - \cdot The latter may even be farther from the solution, in which case both are driven to the solution.
 - · Should not apply stop-gradient to the latter.

Self-Consistency Training

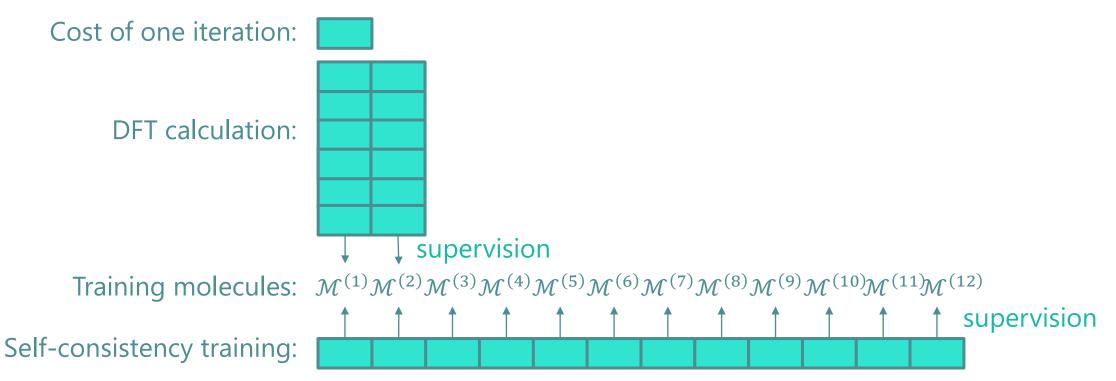
• Self-consistency loss:

$$\mathcal{L}_{\text{self-con}}(\theta; \mathcal{D}) \coloneqq \frac{1}{|\mathcal{D}|} \sum_{\mathcal{M} \sim \mathcal{D}} \left\| \widehat{\mathbf{H}}_{\theta}(\mathcal{M}) - \mathbf{H}_{\mathcal{M}} \left(\mathbf{C}_{\mathcal{M}} \left(\widehat{\mathbf{H}}_{\theta}(\mathcal{M}) \right) \right) \right\|_{F}^{2}.$$

- Not just a regularization: it **determines** the DFT solution (label).
- Minimizing the gap **unnecessarily** drives $\widehat{\mathbf{H}}_{\theta}(\mathcal{M})$ towards $\mathbf{H}_{\mathcal{M}}(\mathbf{C}_{\mathcal{M}}(\widehat{\mathbf{H}}_{\theta}(\mathcal{M})))$:
 - The latter may even be farther from the solution, in which case both are driven to the solution.
 - · Should not apply stop-gradient to the latter.
- · Numerically stable implementation of differentiation through eigensolver.
- GPU implementation of Hamiltonian construction $H_{\mathcal{M}}(\mathbf{C})$.


1. Generalization beyond labeled data: $\mathcal{L}_{label}(\theta; \overline{\mathcal{D}^{(1)}}) + \lambda \mathcal{L}_{self-con}(\theta; \underline{\mathcal{D}^{(2)}})$. limited labeled dataset unlimited unlabeled dataset

- 1. Generalization beyond labeled data: $\mathcal{L}_{label}(\theta; \overline{\mathcal{D}^{(1)}}) + \lambda \mathcal{L}_{self-con}(\theta; \underline{\mathcal{D}^{(2)}})$. limited labeled dataset unlimited unlabeled dataset
- 2. Amortization effect: efficiency over DFT labeling.


Cost of one iteration:

Training molecules: $\mathcal{M}^{(1)}\mathcal{M}^{(2)}\mathcal{M}^{(3)}\mathcal{M}^{(4)}\mathcal{M}^{(5)}\mathcal{M}^{(6)}\mathcal{M}^{(7)}\mathcal{M}^{(8)}\mathcal{M}^{(9)}\mathcal{M}^{(10)}\mathcal{M}^{(11)}\mathcal{M}^{(12)}$

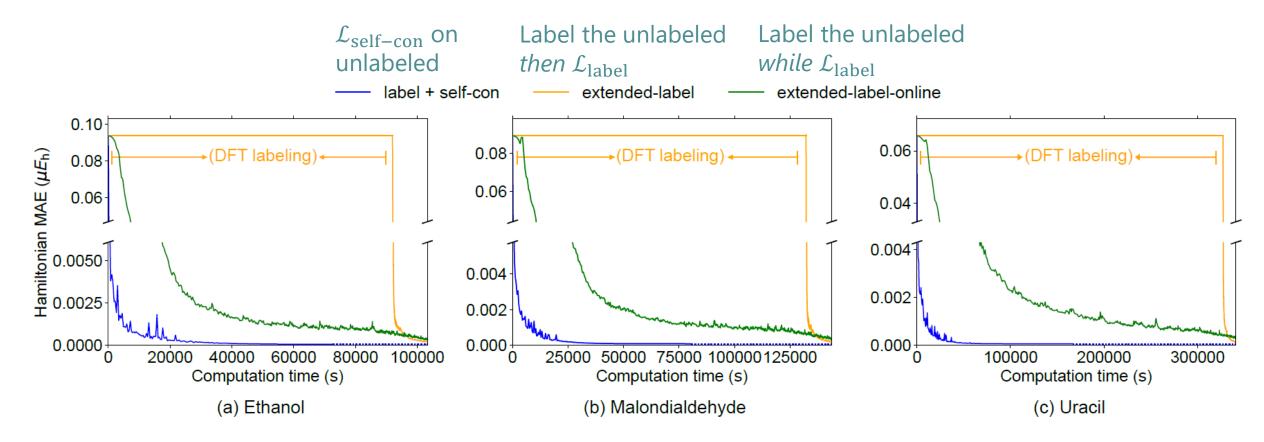
- 1. Generalization beyond labeled data: $\mathcal{L}_{label}(\theta; \overline{\mathcal{D}^{(1)}}) + \lambda \mathcal{L}_{self-con}(\theta; \underline{\mathcal{D}^{(2)}})$. limited labeled dataset unlimited unlabeled dataset
- 2. Amortization effect: efficiency over DFT labeling.

- 1. Generalization beyond labeled data: $\mathcal{L}_{label}(\theta; \overline{\mathcal{D}^{(1)}}) + \lambda \mathcal{L}_{self-con}(\theta; \underline{\mathcal{D}^{(2)}})$. limited labeled dataset unlimited unlabeled dataset
- 2. Amortization effect: efficiency over DFT labeling.

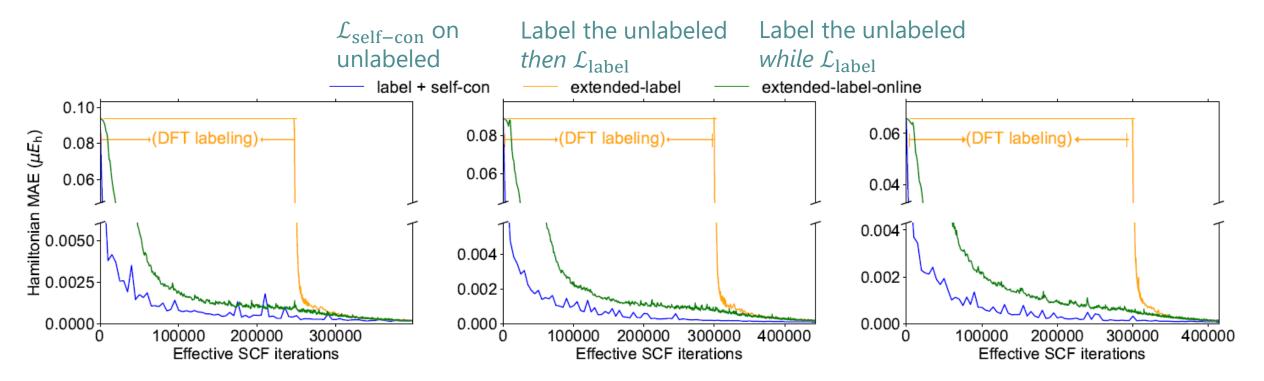
Generalization beyond Labeled Data

· Data-scarce scenario (MD17): 100 labeled + 24900 unlabeled \rightarrow test.

	Direct prediction			Derived molecular properties				As DFT init.
			[l			
Molecule	Setting	$\mathbf{H}\left[\mu E_{\mathbf{h}}\right]\downarrow$	$\epsilon \left[\mu E_{\rm h}\right] \downarrow$	$\mathbf{C}\left[\% ight]\uparrow$	$\epsilon_{\mathrm{HOMO}} \left[\mu E_{\mathrm{h}} \right] \downarrow$	$\epsilon_{ m LUMO} \left[\mu E_{ m h} \right] \downarrow$	$\epsilon_{\Delta} \left[\mu E_{\rm h} \right] \downarrow$	SCF Accel. [%] \downarrow
Ethanol	label	160.36	712.54	99.44	911.64	6800.84	6643.11	68.3
	label + self-con	75.65	285.49	99.94	336.97	1203.60	1224.86	61.5
Malondi-	label	101.19	456.75	99.09	471.92	1093.22	1115.94	69.1
aldehyde	label + self-con	86.60	280.39	99.67	274.45	279.14	324.37	62.1
Uracil	label	88.26	1079.51	95.83	1217.17	12496.1	11850.56	65.8
	label + self-con	63.82	315.40	99.58	359.98	369.67	388.30	54.5


Generalization beyond Labeled Data

• Out-of-distribution (OOD) scenario (QH9):


labeled small molecules + finetune on unlabeled large molecules \rightarrow test on large molecules.

Setting	$\mathbf{H}\left[\mu E_{\mathbf{h}}\right] \downarrow$	$\mathbf{\epsilon} \left[\mu E_{\mathbf{h}} \right] \downarrow$	$\mathbf{C}\left[\% ight]\uparrow$	$\epsilon_{\mathrm{HOMO}}\left[\mu E_{\mathrm{h}}\right]\downarrow$	$\epsilon_{\rm LUMO} \left[\mu E_{\rm h} \right] \downarrow$	$\epsilon_{\Delta} \left[\mu E_{\rm h} \right] \downarrow$	SCF Accel. [%] \downarrow
zero-shot	69.67	403.52	95.72	778.86	12230.49	12203.12	66.3
self-con (all-param)	65.74	375.31	97.31	565.50	1130.55	1316.96	64.5
self-con (adapter)	64.48	268.83	97.12	449.80	1220.54	1394.29	65.0

· Data-scarce scenario (MD17): 100 labeled + 24900 unlabeled \rightarrow test.

· Data-scarce scenario (MD17): 100 labeled + 24900 unlabeled \rightarrow test.

· OOD scenario: labeled small molecules + finetune on unlabeled large molecules \rightarrow test on large molecules. label + self-con extended-label extended-label-online (*nE*^h) 0.00025 0.00020 0.00015 0.00010 →(DFT labeling)+ →(DFT labeling)+ 0.00025 0.00020 0.00015 0.00010 -0.00005 0.00005-200000 100000 300000 50000 100000 150000 200000 0 Computation time (s) Effective SCF iterations

· OOD scenario: labeled small molecules + finetune on unlabeled large molecules \rightarrow test on large molecules. extended-label label + self-con extended-label-online (*nE*^h) 0.00025 0.00020 0.00015 0.00010 (DFT labeling) +(DFT labeling)+ 0.00025 0.00020 0.00015 0.00010 0.00005 0.00005 100000 150000 200000 100000 200000 300000 50000 Computation time (s) Effective SCF iterations Final performance: self-consistency training gives better derived molecular properties!

Setting	$\mathbf{H}\left[\mu E_{\mathbf{h}}\right] \downarrow$	$\mathbf{\epsilon} \left[\mu E_{\mathbf{h}} \right] \downarrow$	$\mathbf{C}\left[\% ight]\uparrow$	$\epsilon_{\mathrm{HOMO}}\left[\mu E_{\mathrm{h}}\right]\downarrow$	$\epsilon_{ m LUMO} \left[\mu E_{ m h} \right] \downarrow$	$\epsilon_{\Delta}\left[\mu E_{\rm h}\right]\downarrow$	SCF Accel. [%] \downarrow
extended-label self-con	59.67	330.05	96.63	541.92	6372.12	6445.33	65.2
	64.48	268.83	97.12	449.80	1220.54	1394.29	65.0

• Direct efficiency comparison with DFT: time for solving MD17 structures under the same stopping criteria.

Molecule	criterion $[\mu E_h]$	$t_{\text{self-con}}\left[\mathbf{s}\right]$	$t_{ m DFT}[m s]$
Ethanol	31.0	$4.50 imes 10^4$	6.40×10^{4}
Malondialdehyd	e 88.9	$4.81 imes 10^4$	1.05×10^{5}
Uracil	177.2	$1.23 imes 10^5$	2.15×10^{5}

Extending Applicable Scale of Hamiltonian Prediction

· Labeled QH9 molecules (\leq 31 atoms) + Finetune on unlabeled larger molecules \rightarrow Test on larger molecules (MD22).

Molecule	Setting	$\mathbf{H}\left[\mu E_{\mathbf{h}}\right] \downarrow$	$\mathbf{\epsilon} \left[\mu E_{\mathbf{h}} \right] \downarrow$	$\mathbf{C}\left[\% ight]\uparrow$	$\epsilon_{\mathrm{HOMO}}\left[\mu E_{\mathrm{h}}\right]\downarrow$	$\epsilon_{ m LUMO} \left[\mu E_{ m h} \right] \downarrow$	$\epsilon_{\Delta}\left[\mu E_{\rm h}\right]\downarrow$	SCF Accel. [%] \downarrow
ALA3 42 atoms	zero-shot self-con	237.71 52.49	6.54×10^3 1.22 ×10 ³	52.24 94.46	6.90×10^3 2.07 × 10 ³	9.51×10^4 3.76×10 ³	9.79×10^4 2.69 ×10 ³	84.6 64.7
	e2e (ET) e2e (Equiformer)	N/A N/A	N/A N/A	N/A N/A	1.74×10^{5} 2.38×10^{5}	7.72×10^{3} 1.16×10^{4}	2.38×10^{5} 2.27×10^{5}	N/A N/A
DHA 56 atoms	zero-shot self-con	397.87 56.12	1.84×10^4 1.81 ×10 ³	20.15 83.51	1.11×10^4 1.99 ×10 ³	1.90×10^5 4.01×10 ³	1.85×10^5 2.34×10 ³	170.8 67.0
	e2e (ET) e2e (Equiformer)	N/A N/A	N/A N/A	N/A N/A	2.92×10^5 3.76×10^5	2.58×10^4 2.31×10^4	3.39×10^{5} 4.17×10^{5}	N/A N/A

Extending Applicable Scale of Hamiltonian Prediction

- Labeled QH9 molecules (\leq 31 atoms) + Finetune on unlabeled larger molecules \rightarrow Test on larger molecules (MD22).
- · Outperform end-to-end property predictors: merit of scientific-law supervision!

Molecule	Setting	$\mathbf{H}\left[\mu E_{\mathbf{h}}\right] \downarrow$	$\mathbf{\epsilon} \left[\mu E_{\mathbf{h}} \right] \downarrow$	$\mathbf{C}\left[\% ight]\uparrow$	$\epsilon_{\mathrm{HOMO}}\left[\mu E_{\mathrm{h}}\right]\downarrow$	$\epsilon_{ m LUMO} \left[\mu E_{ m h} \right] \downarrow$	$\epsilon_{\Delta}\left[\mu E_{\rm h}\right]\downarrow$	SCF Accel. [%] \downarrow
ALA3 42 atoms	zero-shot self-con	237.71 52.49	6.54×10^{3} 1.22×10 ³	52.24 94.46	6.90×10^3 2.07 × 10 ³	9.51×10^4 3.76×10 ³	9.79×10^4 2.69 ×10 ³	84.6 64.7
	e2e (ET) e2e (Equiformer)	N/A N/A	N/A N/A	N/A N/A	1.74×10^{5} 2.38×10^{5}	7.72×10^{3} 1.16×10^{4}	2.38×10^5 2.27×10^5	N/A N/A
DHA 56 atoms	zero-shot self-con	397.87 56.12	1.84×10^4 1.81 ×10 ³	20.15 83.51	1.11×10^4 1.99 ×10 ³	1.90×10^5 4.01×10 ³	1.85×10^5 2.34×10 ³	170.8 67.0
	e2e (ET) e2e (Equiformer)	N/A N/A	N/A N/A	N/A N/A	2.92×10^{5} 3.76×10^{5}	2.58×10^4 2.31×10^4	3.39×10^5 4.17×10^5	N/A N/A

