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- Molecular properties: interaction among electrons and atomic nuclei.
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- Molecular properties: interaction among electrons and atomic nuclei.
- DFT: solve electronic structure hence properties.

- Hamiltonian: raw DFT solution, derive all properties.

- Hamiltonian prediction:
“root property” prediction, provide all properties that DFT can.
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- Hamiltonian prediction has a self-consistency principle: Training without label!
- Distinction from common property prediction: data-free training / self-improvement.
- Compensating data scarcity with scientific laws.
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- Hamiltonian prediction has a self-consistency principle: Training without label!
- Distinction from common property prediction: data-free training / self-improvement.
- Compensating data scarcity with scientific laws.
- Unique benefits:
- Exact generalization to arbitrary workload beyond labeled data (also for other properties).
- Amortization of DFT calculation: more efficient than running DFT to generate labels.
- Extending applicable scale of Hamiltonian prediction.
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Background: DFT Formulation

- Describe the N-electron state by orbitals {¢;(r)},.
- Expressed as coefficients C under a basis set: ¢;(r) = ¥5_; Cqi Nac o (1)



Background: DFT Formulation

- Describe the N-electron state by orbitals {¢;(r)},.
- Expressed as coefficients C under a basis set: ¢;(r) = ¥5_; Cqi Nac o (1)
- Solve for C by minimizing E;;(CCT), s.t. CTS;, C = 1.

- E5r(CCT) is a known, explicit function (given an approximate XC functional).

- (Sa)ap = (Mca|nrp)-



Background: DFT Formulation

- Describe the N-electron state by orbitals {¢;(r)},.
- Expressed as coefficients C under a basis set: ¢;(r) = ¥5_; Cqi Nac o (1)
- Solve for C by minimizing E;;(CCT), s.t. CTS;, C = 1.
- Er(CCT) is a known, explicit function (given an approximate XC functional).
- (Sa0)ap = (Mc.alnacp):
- Solve the optimization problem: V¢|E;(CCT) — tr((CTS»C—De)| =0



Background: DFT Formulation

- Describe the N-electron state by orbitals {¢;(r)},.
- Expressed as coefficients C under a basis set: ¢;(r) = ¥5_; Cqi Nac o (1)
- Solve for C by minimizing E;;(CCT), s.t. CTS;, C = 1.
- Er(CCT) is a known, explicit function (given an approximate XC functional).
- (Sa0)ap = (Mc.alnacp):
- Solve the optimization problem: V¢|E;(CCT) — tr((CTS»C—De)| =0
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DFT Calculation - Self-Consistency Training
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DFT Calculation - Self-Consistency Training
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Self-Consistency Training

- Self-consistency loss:
2

Lseif—con(6; D) = HZM~D HHH(M) — Hy (CM (HQ(M))) o

- Not just a regularization: it determines the DFT solution (label).
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- Self-consistency loss:
2
=
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- Not just a regularization: it determines the DFT solution (label).

- Minimizing the gap unnecessarily drives Hy (M) towards H,, (CM (ﬁg(M))):

- The latter may even be farther from the solution, in which case both are driven to the solution.
- Should not apply stop-gradient to the latter.



Self-Consistency Training

- Self-consistency loss:
i 2

Lseif-con(0; D) = Xpe~p ”ﬁH(M) —Hy (CM (ﬁH(M))) .

- Not just a regularization: it determines the DFT solution (label).

- Minimizing the gap unnecessarily drives Hy (M) towards H,, (CM (ﬁg(M))):
- The latter may even be farther from the solution, in which case both are driven to the solution.
- Should not apply stop-gradient to the latter.

- Numerically stable implementation of differentiation through eigensolver.

- GPU implementation of Hamiltonian construction H,,(C).
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Unique Benefits

1. Generalization beyond labeled data: £j,pe1(6; D®) + A Lgeit—_con(8; D).
limited labeled dataset unlimited unlabeled dataset

2. Amortization effect: efficiency over DFT labeling.
Cost of one iteration: [

DFT calculation:

supervision
Training molecules: MM @M@ n G A @ pe (D pp @ v O pr W0 Al (12)

supervision
Self-consistency training:



Generalization beyond Labeled Data

- Data-scarce scenario (MD17): 100 labeled + 24900 unlabeled = test.

Direct prediction Derived molecular properties As DFT init.

t_‘_\ [ : L : 1

Molecule Setting H[pEw | epbrn] ] C [%} T enowmo [pEw] 4 evvmo [pEn] | ea [pEn] | SCF Accel. [Off}] 1
Ethanol label 160.36 712.54 99.44 911.64 6800.84 6643.11 68.3
label + self-con 75.65 285.49 99.94 336.97 1203.60 1224.86 61.5
Malondi- label 101.19 456.75 99.09 471.92 1093.22 1115.94 69.1
aldehyde label + self-con 86.60 280.39 99.67 274.45 279.14 324.37 62.1
. label 88.26 1079.51 95.83 1217.17 12496.1 11850.56 65.8

Uracil

label + self-con 63.82 315.40 99.58 359.98 369.67 388.30 54.5




Generalization beyond Labeled Data

- Qut-of-distribution (OOD) scenario (QH9):
labeled small molecules + finetune on unlabeled large molecules - test on large molecules.

Setting H [,uEh] i, € [.LLE]]] J, C [%} T EHOMO [,uEh] ‘L ELUMO [,U,Eh} l EA [.LLE}]} ‘I, SCF Accel. [%] i,
zero-shot 69.67 403.52 95.72 778.86 12230.49 12203.12 66.3
self-con (all-param) 65.74 375.31 97.31 565.50 1130.55 1316.96 64.5

self-con (adapter) 64.48 268.83 97.12 449.80 1220.54 1394.29 65.0




Training Efficiency by Amortization

Data-scarce scenario (MD17): 100 labeled + 24900 unlabeled = test.
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Training Efficiency by Amortization

- Data-scarce scenario (MD17): 100 labeled + 24900 unlabeled = test.
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Training Efficiency by Amortization

-+ OOD scenario:
labeled small molecules + finetune on unlabeled large molecules - test on large molecules.
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Training Efficiency by Amortization

OQD scenario:
labeled small molecules + finetune on unlabeled large molecules - test on large molecules.
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Final performance: self-consistency training gives better derived molecular properties!
Setting  H[uEw] | e[pEn]l C[%] 1 enomo [nEn] |l eLumo [pEn] L ea[pEn] | SCF Accel. [%] |

extended-label 59.67 330.05 96.63 541.92 6372.12 6445.33 65.2
self-con 64.48 268.83 97.12 449.80 1220.54 1394.29 65.0




Training Efficiency by Amortization

- Direct efficiency comparison with DFT:
time for solving MD17 structures under the same stopping criteria.

Molecule criterion gt Fh]| Lsetf-con [S] tprT [8]
Ethanol 31.0 4.50x10* 6.40x10*
Malondialdehyde 88.9 4.81x10* 1.05x10°

Uracil 177.2 1.23%x10%  2.15x10°




Extending Applicable Scale of Hamiltonian Prediction

- Labeled QH9 molecules (< 31 atoms) + Finetune on unlabeled larger molecules
—> Test on larger molecules (MD22).

Molecule Setting HpEw] L elpEn]l Cl%] 1T enomo [nEn] 4 enumo [nEw] 4 ea[pEn] | SCF Accel. [%] |
zero-shot 237.71  6.54x10° 52.24 6.90% 103 9.51x10% 9.79% 104 84.6
ALA3 self-con 5249  1.22x10°  94.46 2.07x10° 3.76x10° 2.69%10° 64.7
42 atoms
zero-shot 397.87  1.84x10* 20.15 1.11x10% 1.90%10° 1.85%10° 170.8
DHA self-con 56.12  1.81x10% 83.51 1.99% 103 4.01x103 2.34% 103 67.0

56 atoms




Extending Applicable Scale of Hamiltonian Prediction

- Labeled QH9 molecules (< 31 atoms) + Finetune on unlabeled larger molecules
—> Test on larger molecules (MD22).

- Outperform end-to-end property predictors: merit of scientific-law supervision!

Molecule Setting HpEw] L elpEn]l Cl%] 1T enomo [nEn] 4 enumo [nEw] 4 ea[pEn] | SCF Accel. [%] |
zero-shot 237.71  6.54x10° 52.24 6.90% 103 9.51x10% 9.79% 104 84.6
ALA3 self-con 5249  1.22x10°  94.46 2.07x10° 3.76x10° 2.69%10° 64.7
42 atoms e2e (ET) N/A N/A N/A 1.74%10° 772%x103 2.38%10° N/A
e2e (Equiformer) N/A N/A N/A 2.38%10° 1.16x10% 2.27x10° N/A
zero-shot 397.87  1.84x10* 20.15 1.11x10% 1.90%10° 1.85%10° 170.8
DHA self-con 56.12  1.81x10% 83.51 1.99% 103 4.01x103 2.34% 103 67.0
56 atoms e2e (ET) N/A N/A N/A 2.92%x10° 2.58%10% 3.39%10° N/A
e2e (Equiformer) N/A N/A N/A 3.76x10° 231x10% 4.17x10° N/A
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