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Motivation

Data Heterogeneity in Molecular Science

 Different levels of accuracy:
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Data Heterogeneity in Molecular Science

 Different levels of accuracy:

 Some tasks cost more to generate data.

 E.g., equilibrium structure costs multiple times 

more than energy does.

 Accuracy-efficiency trade-off of data-

generation methods.

 E.g., PubChemQC B3LYP/6-31G*//PM6 

generates energy in DFT level, but equilibrium 

structure in semi-empirical level.

 Tasks cannot directly benefit each other.

 E.g., force labels on off-equilibrium structures 

cannot yet directly improve equilibrium 

structure.
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General Idea

 Basic approach: multi-task learning.

 Connection in the input end:

shared input processor (encoder).

Encoder ℰ 𝛟

molecular input

Structure 

Decoder 

𝒟S
𝛉S

Energy 

Decoder 

𝒟E
𝛉E

Task X 

Decoder 

𝒟X
𝛉X

...

𝐑 data 𝐄 data 𝐗 data

𝐑 pred. 𝐄 pred. 𝐗 pred.



General Idea

 Basic approach: multi-task learning.

 Connection in the input end:

shared input processor (encoder).

 Proposed approach: scientific consistency.

 Scientific tasks originate in fundamental 

scientific laws, which explicitly connect them.

 Connection in the output end:

direct information exchange among tasks:

Encoder ℰ 𝛟

molecular input

Structure 

Decoder 

𝒟S
𝛉S

Energy 

Decoder 

𝒟E
𝛉E

Task X 

Decoder 

𝒟X
𝛉X

...

𝐑 data 𝐄 data 𝐗 data

𝐑 pred. 𝐄 pred. 𝐗 pred.

consistency consistency

𝐑 = argmin
𝐑′

𝐸 𝐑′  

𝑝 𝐑 ∝ exp −
𝐸 𝐑

𝑘B𝒯
 

...



General Idea

 Basic approach: multi-task learning.

 Connection in the input end:

shared input processor (encoder).

 Proposed approach: scientific consistency.

 Scientific tasks originate in fundamental 

scientific laws, which explicitly connect them.

 Connection in the output end:

direct information exchange among tasks:

 Information of a higher level of accuracy can 

flow from one task (e.g., energy) to another (e.g., 

equilibrium structure).

 Data of a related task (e.g., force) can directly 

improve the performance of the concerned task 

(e.g., equilibrium structure).
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General Method

 Equilibrium structure is the argmin of energy:

𝐑⋆ 𝒢 = argmin
𝐑

𝐸𝒢 𝐑 .

 Equilibrium structure is a sample from the thermodynamic distribution defined 

by the energy at low temperature:

𝐑⋆ 𝒢 ∼ 𝑝𝒢 𝐑 ∝ exp −
𝐸𝒢 𝐑

𝑘𝐵𝒯
.

 Force is the gradient of energy:

Force labels on off-equilibrium structures

→ better energy landscape

→ better equilibrium structure.



Specification for Diffusion Model
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Specification for Diffusion Model

 Equilibrium structure is the argmin of energy:

𝐑⋆ 𝒢 = argmin
𝐑

𝐸𝒢 𝐑 .

➔ min
𝜃

𝔼𝛈 max 0, 𝐸𝜙,𝒢 𝐑𝜃
⋆ 𝒢 − 𝐸𝜙,𝒢 𝐑𝜃

⋆ 𝒢 + 𝛈 .

 Gradient-norm loss ∇𝐸𝜙,𝒢 𝐑𝜃
⋆ 𝒢

2
 or just 𝐸𝜙,𝒢 𝐑𝜃

⋆ 𝒢  as a loss are unstable.

 Only structure-related parameters 𝜃 are optimized.

Optimality Consistency
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 Taking 𝜏 > 0 but close to 0:
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 Does not contradict with the optimality consistency loss: one is near 𝑇, one is near 0.

Score Consistency



 Zero-shot:

Experiments

Trained on PubChemQC B3LYP/6-31G*//PM6:

“Free lunch” redeemed from scientific laws!

Trained on PubChemQC B3LYP/6-31G*//PM6 + additional force data:



 With finetuning:

Experiments

Trained on PubChemQC B3LYP/6-31G*//PM6:

Trained on PubChemQC B3LYP/6-31G*//PM6 + additional force data:



 Analysis

Experiments

EGap ≔
𝐸𝜙,𝒢 𝐑pred,𝜃

⋆ 𝒢 −𝐸𝜙,𝒢 𝐑⋆ 𝒢

𝐸𝜙,𝒢 𝐑⋆ 𝒢
:
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