

Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning

Chang Liu, Microsoft Research AI for Science, on behalf of the authors <u>changliu@microsoft.com</u>

Motivation

Data Heterogeneity in Molecular Science

- Different levels of accuracy:
 - · Some tasks cost more to generate data.
 - E.g., equilibrium structure costs multiple times more than energy does.

Motivation

Data Heterogeneity in Molecular Science

- Different levels of accuracy:
 - Some tasks cost more to generate data.
 - E.g., equilibrium structure costs multiple times more than energy does.
 - Accuracy-efficiency trade-off of datageneration methods.
 - E.g., PubChemQC B3LYP/6-31G*//PM6 generates energy in DFT level, but equilibrium structure in semi-empirical level.

Motivation

Data Heterogeneity in Molecular Science

- Different levels of accuracy:
 - Some tasks cost more to generate data.
 - E.g., equilibrium structure costs multiple times more than energy does.
 - Accuracy-efficiency trade-off of datageneration methods.
 - E.g., PubChemQC B3LYP/6-31G*//PM6 generates energy in DFT level, but equilibrium structure in semi-empirical level.
- Tasks cannot *directly* benefit each other.
 - E.g., force labels on off-equilibrium structures cannot yet directly improve equilibrium structure.

General Idea

- Basic approach: multi-task learning.
 - Connection in the input end: shared input processor (encoder).

General Idea

- Basic approach: multi-task learning.
 - Connection in the input end: shared input processor (encoder).
- Proposed approach: **scientific consistency**.
 - Scientific tasks originate in fundamental scientific laws, which explicitly connect them.
 - Connection in the output end: direct information exchange among tasks:

General Idea

- Basic approach: multi-task learning.
 - Connection in the input end: shared input processor (encoder).
- Proposed approach: **scientific consistency**.
 - Scientific tasks originate in fundamental scientific laws, which explicitly connect them.
 - Connection in the output end: direct information exchange among tasks:
 - Information of a higher level of accuracy can flow from one task (e.g., energy) to another (e.g., equilibrium structure).
 - Data of a related task (e.g., force) can directly improve the performance of the concerned task (e.g., equilibrium structure).

General Method

- Equilibrium structure is the argmin of energy: $\mathbf{R}^{\star}(\mathcal{G}) = \underset{\mathbf{R}}{\operatorname{argmin}} E_{\mathcal{G}}(\mathbf{R}).$
- Equilibrium structure is a sample from the thermodynamic distribution defined by the energy at low temperature:

$$\mathbf{R}^{\star}(\mathcal{G}) \sim p_{\mathcal{G}}(\mathbf{R}) \propto \exp\left(-\frac{E_{\mathcal{G}}(\mathbf{R})}{k_{B}\mathcal{T}}\right).$$

Force is the gradient of energy:
 Force labels on off-equilibrium structures
 → better energy landscape
 → better equilibrium structure.

• Diffusion model for structure generation:

Target distribution
$$p_{\mathcal{G}}(\mathbf{R})$$
 $d\mathbf{R}_{t} = -\frac{\beta_{t}}{2}\mathbf{R}_{t} dt + \sqrt{\beta_{t}} d\mathbf{W}_{t}$ Simple distribution $d\mathbf{R}_{\bar{t}} = \frac{\beta_{T-\bar{t}}}{2}\mathbf{R}_{\bar{t}} d\bar{t} + \beta_{T-\bar{t}} \nabla \log p_{\mathcal{G},T-\bar{t}}(\mathbf{R}_{\bar{t}}) d\bar{t} + \sqrt{\beta_{T-\bar{t}}} d\mathbf{W}_{\bar{t}}$

• Diffusion model for structure generation:

Target distribution

$$p_{\mathcal{G}}(\mathbf{R}) = -\frac{\beta_{t}}{2} \mathbf{R}_{t} dt + \sqrt{\beta_{t}} d\mathbf{W}_{t}$$

$$p_{T}(\mathbf{R})$$
Simple distribution

$$d\mathbf{R}_{\bar{t}} = \frac{\beta_{T-\bar{t}}}{2} \mathbf{R}_{\bar{t}} d\bar{t} + \beta_{T-\bar{t}} \nabla \log p_{\mathcal{G},T-\bar{t}}(\mathbf{R}_{\bar{t}}) d\bar{t} + \sqrt{\beta_{T-\bar{t}}} d\mathbf{W}_{\bar{t}}$$

$$\approx \mathbf{s}_{\theta,\mathcal{G},T-\bar{t}}(\mathbf{R}_{\bar{t}})$$
Denoising score matching:

$$\mathbb{E}_{p_{0}(\mathbf{R}_{0})} \mathbb{E}_{p(\mathbf{R}_{t}|\mathbf{R}_{0})} \| \mathbf{s}_{\theta,\mathcal{G},t}(\mathbf{R}_{t}) - \nabla_{\mathbf{R}_{t}} \log p(\mathbf{R}_{t}|\mathbf{R}_{0}) \|^{2}$$

$$= \mathbb{E}_{p_{0}(\mathbf{R}_{0})} \mathbb{E}_{\epsilon} \| \mathbf{s}_{\theta,\mathcal{G},t}(\sqrt{\alpha_{t}} \mathbf{R}_{0} + \sqrt{1 - \alpha_{t}} \epsilon) + \frac{\epsilon}{\sqrt{1 - \alpha_{t}}} \|^{2},$$

$$\bar{\alpha}_{t} := \exp\left(-\int_{0}^{t} \beta_{s} ds\right).$$

• Diffusion model for structure generation:

$$\begin{aligned} & \text{Target distribution}} \quad p_{\mathcal{G}}(\mathbf{R}) \quad d\mathbf{R}_{t} = -\frac{\beta_{t}}{2} \mathbf{R}_{t} \, dt + \sqrt{\beta_{t}} \, d\mathbf{W}_{t} \quad p_{T}(\mathbf{R}) \quad \text{Simple distribution} \\ & \mathbf{R}_{\bar{t}} = \frac{\beta_{T-\bar{t}}}{2} \mathbf{R}_{\bar{t}} \, d\bar{t} + \beta_{T-\bar{t}} \nabla \log p_{\mathcal{G},T-\bar{t}}(\mathbf{R}_{\bar{t}}) \, d\bar{t} + \sqrt{\beta_{T-\bar{t}}} \, d\mathbf{W}_{\bar{t}} \\ & \mathbf{D}_{\theta,\mathcal{G},t}(\mathbf{R}_{t}) \coloneqq \frac{\mathbf{R}_{t} + (1-\bar{\alpha}_{t}) \, \mathbf{s}_{\theta,\mathcal{G},t}(\mathbf{R}_{t})}{\sqrt{\alpha_{t}}} \quad \bullet \quad \mathbf{S}_{\theta,\mathcal{G},T-\bar{t}}(\mathbf{R}_{\bar{t}}) \\ & \text{Denoising loss:} \quad Denoising score matching: \\ & \mathbb{E}_{p_{0}(\mathbf{R}_{0})} \mathbb{E}_{\epsilon} \left\| \mathbf{D}_{\theta,\mathcal{G},t}(\sqrt{\alpha_{t}} \, \mathbf{R}_{0} + \sqrt{1-\bar{\alpha}_{t}} \, \epsilon) - \mathbf{R}_{0} \right\|^{2}. \quad \mathbb{E}_{p_{0}(\mathbf{R}_{0})} \mathbb{E}_{p(\mathbf{R}_{t}|\mathbf{R}_{0})} \left\| \mathbf{s}_{\theta,\mathcal{G},t}(\mathbf{R}_{t}) - \nabla_{\mathbf{R}_{t}} \log p(\mathbf{R}_{t}|\mathbf{R}_{0}) \right\|^{2} \\ & = \mathbb{E}_{p_{0}(\mathbf{R}_{0})} \mathbb{E}_{\epsilon} \left\| \mathbf{s}_{\theta,\mathcal{G},t}(\sqrt{\alpha_{t}} \, \mathbf{R}_{0} + \sqrt{1-\bar{\alpha}_{t}} \, \epsilon) + \frac{\epsilon}{\sqrt{1-\bar{\alpha}_{t}}} \right\|^{2}, \\ & \bar{\alpha}_{t} \coloneqq \exp\left(-\int_{0}^{t} \beta_{s} \, ds\right). \end{aligned}$$

- Equilibrium structure is the argmin of energy: $\mathbf{R}^{*}(\mathcal{G}) = \operatorname{argmin} E_{\mathcal{G}}(\mathbf{R}).$
 - $\Rightarrow \min_{\theta} \mathbb{E}_{\eta} \max\{0, E_{\phi,\mathcal{G}}(\mathbf{R}_{\theta}^{\star}(\mathcal{G})) E_{\phi,\mathcal{G}}(\mathbf{R}_{\theta}^{\star}(\mathcal{G}) + \eta)\}.$
 - Gradient-norm loss $\|\nabla E_{\phi,\mathcal{G}}(\mathbf{R}^{\star}_{\theta}(\mathcal{G}))\|^2$ or just $E_{\phi,\mathcal{G}}(\mathbf{R}^{\star}_{\theta}(\mathcal{G}))$ as a loss are unstable.
 - · Only structure-related parameters θ are optimized.

Optimality Consistency

- Optimality consistency: $\min_{\theta} \mathbb{E}_{\eta} \max\{0, E_{\phi,\mathcal{G}}(\mathbf{R}_{\theta}^{\star}(\mathcal{G})) E_{\phi,\mathcal{G}}(\mathbf{R}_{\theta}^{\star}(\mathcal{G}) + \eta)\}.$ To obtain $\mathbf{R}_{\theta}^{\star}(\mathcal{G})$:
 - Using reverse process is unaffordably costly for optimization.

- Optimality consistency: $\min_{\theta} \mathbb{E}_{\eta} \max\{0, E_{\phi,\mathcal{G}}(\mathbf{R}^{\star}_{\theta}(\mathcal{G})) E_{\phi,\mathcal{G}}(\mathbf{R}^{\star}_{\theta}(\mathcal{G}) + \eta)\}.$ To obtain $\mathbf{R}^{\star}_{\theta}(\mathcal{G})$:
 - Using reverse process is unaffordably costly for optimization.
 - · Leveraging the denoising formulation: $\mathbf{D}_{\theta,\mathcal{G},t}(\mathbf{R}_t)$ targets $\mathbb{E}_{|\mathcal{G}}[\mathbf{R}_0|\mathbf{R}_t]$
 - → **D**_{θ,G,T}(ε) targets $\mathbb{E}_{|G|}[\mathbf{R}_0]$ =?= **R**^{*}(G)?
 - The target distribution should be rotationally invariant:

 $p_{\mathcal{G}}(\mathbf{R}_0) = p_{\mathcal{G}}(\mathbf{Q} \mathbf{R}_0) \twoheadrightarrow \mathbb{E}_{|\mathcal{G}}[\mathbf{R}_0] = \mathbb{E}_{\text{Unif}(\mathbf{Q})}[\mathbf{Q} \mathbf{R}^{\star}(\mathcal{G})] = 0.$

- Optimality consistency: $\min_{\theta} \mathbb{E}_{\eta} \max\{0, E_{\phi,\mathcal{G}}(\mathbf{R}^{\star}_{\theta}(\mathcal{G})) E_{\phi,\mathcal{G}}(\mathbf{R}^{\star}_{\theta}(\mathcal{G}) + \eta)\}.$ To obtain $\mathbf{R}^{\star}_{\theta}(\mathcal{G})$:
 - Using reverse process is unaffordably costly for optimization.
 - · Leveraging the denoising formulation: $\mathbf{D}_{\theta,\mathcal{G},t}(\mathbf{R}_t)$ targets $\mathbb{E}_{|\mathcal{G}}[\mathbf{R}_0|\mathbf{R}_t]$
 - → $\mathbf{D}_{\theta,\mathcal{G},T}(\boldsymbol{\epsilon})$ targets $\mathbb{E}_{|\mathcal{G}}[\mathbf{R}_0]$ =?= $\mathbf{R}^*(\mathcal{G})$?
 - The target distribution should be rotationally invariant: $p_G(\mathbf{R}_0) = p_G(\mathbf{Q} \mathbf{R}_0) \twoheadrightarrow \mathbb{E}_{|G}[\mathbf{R}_0] = \mathbb{E}_{\text{Unif}(\mathbf{O})}[\mathbf{Q} \mathbf{R}^*(\mathcal{G})] = 0.$
 - · Taking $\tau < T$ but close to $T: \mathbf{D}_{\theta,\mathcal{G},\tau}(\boldsymbol{\epsilon})$ targets $\mathbb{E}_{|\mathcal{G}}[\mathbf{R}_0 | \mathbf{R}_{\tau} = \boldsymbol{\epsilon}]$,

 $p_{\mathcal{G}}(\mathbf{R}_0|\mathbf{R}_{\tau}) \propto p_{\mathcal{G}}(\mathbf{R}_0) \mathcal{N}(\mathbf{R}_0 | \mathbf{R}_{\tau}/\sqrt{\bar{\alpha}_{\tau}}, (1/\bar{\alpha}_{\tau}-1)\mathbf{I})$ assigns a larger probability along the orientation of \mathbf{R}_{τ} : **symmetry breaking**!

$$\Rightarrow \min_{\theta} \mathbb{E}_{\eta} \max \Big\{ 0, \ E_{\phi, \mathcal{G}} \left(\mathbf{D}_{\theta, \mathcal{G}, \tau}(\boldsymbol{\epsilon}) \right) - E_{\phi, \mathcal{G}} \left(\mathbf{D}_{\theta, \mathcal{G}, \tau}(\boldsymbol{\epsilon}) + \eta \right) \Big\}.$$

- Equilibrium structure is a sample from the thermodynamic distribution at low temperature: $\mathbf{R}^{\star}(\mathcal{G}) \sim p_{\mathcal{G}}(\mathbf{R}) \propto \exp\left(-\frac{E_{\mathcal{G}}(\mathbf{R})}{k_{B}\mathcal{T}}\right), \quad \Rightarrow \quad \min_{\theta} \mathbb{E}_{\mathbf{R}} \left\| \nabla \log p_{\theta,\mathcal{G}}(\mathbf{R}) + \frac{\nabla E_{\phi,\mathcal{G}}(\mathbf{R})}{k_{B}\mathcal{T}} \right\|^{2}.$
 - Proper calculation of $\log p_{\theta,\mathcal{G}}(\mathbf{R})$ (solving ODE) is unaffordably costly for optimization.

- Equilibrium structure is a sample from the thermodynamic distribution at low temperature: $\mathbf{R}^{\star}(\mathcal{G}) \sim p_{\mathcal{G}}(\mathbf{R}) \propto \exp\left(-\frac{E_{\mathcal{G}}(\mathbf{R})}{k_{B}\mathcal{T}}\right), \qquad \Rightarrow \qquad \min_{\theta} \mathbb{E}_{\mathbf{R}} \left\| \nabla \log p_{\theta,\mathcal{G}}(\mathbf{R}) + \frac{\nabla E_{\phi,\mathcal{G}}(\mathbf{R})}{k_{B}\mathcal{T}} \right\|^{2}.$
 - Proper calculation of $\log p_{\theta,\mathcal{G}}(\mathbf{R})$ (solving ODE) is unaffordably costly for optimization.
 - $\mathbf{s}_{\theta,\mathcal{G},t=0}(\mathbf{R})$ targets $\nabla \log p_{\theta,\mathcal{G}}(\mathbf{R})$.

• But
$$\mathbf{s}_{\theta,\mathcal{G},t}(\mathbf{R}_t) = \frac{\sqrt{\overline{\alpha}_t} \mathbf{D}_{\theta,\mathcal{G},t}(\mathbf{R}_t) - \mathbf{R}_t}{1 - \overline{\alpha}_t} : 0/0 \text{ near } t = 0.$$

- Equilibrium structure is a sample from the thermodynamic distribution at low temperature: $\mathbf{R}^{\star}(\mathcal{G}) \sim p_{\mathcal{G}}(\mathbf{R}) \propto \exp\left(-\frac{E_{\mathcal{G}}(\mathbf{R})}{k_{B}\mathcal{T}}\right), \qquad \Rightarrow \qquad \min_{\theta} \mathbb{E}_{\mathbf{R}} \left\| \nabla \log p_{\theta,\mathcal{G}}(\mathbf{R}) + \frac{\nabla E_{\phi,\mathcal{G}}(\mathbf{R})}{k_{B}\mathcal{T}} \right\|^{2}.$
 - Proper calculation of $\log p_{\theta,\mathcal{G}}(\mathbf{R})$ (solving ODE) is unaffordably costly for optimization.
 - · $\mathbf{s}_{\theta,\mathcal{G},t=0}(\mathbf{R})$ targets $\nabla \log p_{\theta,\mathcal{G}}(\mathbf{R})$.
 - But $\mathbf{s}_{\theta,\mathcal{G},t}(\mathbf{R}_t) = \frac{\sqrt{\overline{\alpha}_t} \mathbf{D}_{\theta,\mathcal{G},t}(\mathbf{R}_t) \mathbf{R}_t}{1 \overline{\alpha}_t} : 0/0 \text{ near } t = 0.$
 - Taking $\tau > 0$ but close to 0:

$$\Rightarrow \min_{\theta} \mathbb{E}_{p_{\tau}(\mathbf{R})} \left\| \frac{\sqrt{\overline{\alpha}_{\tau}} \mathbf{D}_{\theta, \mathcal{G}, t=\tau}(\mathbf{R}) - \mathbf{R}}{1 - \overline{\alpha}_{\tau}} + \frac{\nabla E_{\phi, \mathcal{G}}(\mathbf{R})}{k_{B} \mathcal{T}} \right\|^{2}.$$
 Score Consistency

· Does not contradict with the optimality consistency loss: one is near T, one is near 0.

Experiments

· Zero-shot:

Trained on PubChemQC B3LYP/6-31G*//PM6:

Test Set	PCQ				QM9				
Generated by	Denoising		DDIM		Denoising		DDIM		
Struct. Stat.	Mean	Min	Mean	Min	Mean	Min	Mean	Min	
Multi-Task Consistency	1.189 1.158	0.655 0.645	1.041 1.007	0.361 0.346	0.928 0.848	0.545 0.490	0.669 0.650	0.197 0.194	

-"Free lunch" redeemed from scientific laws!

Trained on PubChemQC B3LYP/6-31G*//PM6 + additional force data:

Additional	Test Set	PCQ				QM9			
Training Data	Generated by	Denoising		DDIM		Denoising		DDIM	
	Struct. Stat.	Mean	Min	Mean	Min	Mean	Min	Mean	Min
SPICE	Multi-Task	1.161	0.631	1.047	0.373	0.876	0.486	0.670	0.207
Iorce	Consistency	1.147	0.590	1.013	0.345	0.842	0.485	0.644	0.194
PM6 subset	Multi-Task	1.199	0.672	1.027	0.365	0.914	0.545	0.648	0.193
force	Consistency	1.113	0.629	1.019	0.351	0.836	0.488	0.646	0.192

Experiments

• With finetuning:

Trained on PubChemQC B3LYP/6-31G*//PM6:

Test Set	PCQ				QM9				
Generated by	Denoising		DDIM		Denoising		DDIM		
Struct. Stat.	Mean	Min	Mean	Min	Mean	Min	Mean	Min	
Multi-Task Consistency	1.158 1.152	0.614 0.610	0.921 0.918	0.220 0.218	0.889 0.835	0.467 0.420	0.501 0.493	0.090 0.076	

Trained on PubChemQC B3LYP/6-31G*//PM6 + additional force data:

Additional	Test Set	PCQ				QM9			
Training Data	Generated by	Denoising		DDIM		Denoising		DDIM	
	Struct. Stat.	Mean	Min	Mean	Min	Mean	Min	Mean	Min
SPICE force	Multi-Task Consistency	1.161 1.132	0.618 0.581	0.930 0.916	0.219 0.215	0.855 0.832	0.444 0.418	0.505 0.492	0.081 0.073
PM6 subset force	Multi-Task Consistency	1.143 1.099	0.603 0.542	0.927 0.914	0.224 0.215	0.855 0.822	0.441 0.419	0.497 0.490	0.080 0.076

Experiments

• Analysis

