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THE QUESTION
Can we determine a joint distribution p(x, z) only using two
conditional distributions p(x|z) and q(z|x) that form a cycle?
• Compatibility: is there a common joint that induces both con-

ditionals?
• Determinacy: is the common joint unique?

PROBLEMS OF CURRENT GENERATIVE MODELS
VAE, (Bi)GAN, flow/diffusion-based:
• Need p(x|z) for generation, q(z|x) for representation.
• Use a prior p(z) to define joint p(x, z) = p(z)p(x|z).
Specifying a prior leads to:
• Manifold mismatch (hinders generation):

the modeled p(x) is restricted to a simply-connected support.
• Posterior collapse (hinders representation):

representations of different x are squeezed together.
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THE ANSWER: THEORY
Absolutely-Continuous
Case:
“smooth” distr. on con-
tinuous spaces, all distr.
on discrete spaces.
• VAE, diffusion-based.
• Thm: Compatibility is

achieved, iff on a suit-
able set S ⊆ X×Z constructed from the conditional densities,
p(x|z)
q(z|x) a.e. factorizes as a(x)b(z), where a(x) is integrable.

– Equivalence condition, operable, self-contained.
– Why complicated: conditionals can be arbitrary on a set of

marginal measure zero (e.g., outside the marginal support).
• Thm: Determinacy is achieved on S, if S is “rectangular”:
Sz

a.s.
= SX,∀ a.e. z ∈ SZ and Sx

a.s.
= SZ,∀ a.e. x ∈ SX.

– Determinacy is only possible on each S.
– If both densities have full support, X×Z is the only S .

Dirac Case:
p(X|z) = δf(z)(X ) := I[f(z) ∈ X ].
• Incl. BiGAN, flow-based.
• Thm: Compatibility is achieved,

iff ∃x0 s.t. q(f−1({x0})|x0) = 1:
q puts mass only on the pre-image.

– Only one x0 suffices: δ(x0,f(x0)) is a common joint.
– When q(Z|x) = δg(x)(Z), min. cycle-consistency loss

Epref(x)`(x, f(g(x))) is sufficient.
– Flow-based models are natually compatible.
• Determinacy:

– On each {x0}, the joint δ(x0,f(x0)) is unique.
– If such x0 is not unique, the joint is not unique on X×Z:

compatible p, q only determine a curve in X×Z but not a
distribution on it.

THE NEW FRAMEWORK: CYCLIC-CONDITIONAL GENERATIVE MODEL (CYGEN)
Eligibility as a generative model:
• Determinacy: Use absolutely-continuous conditionals, modeled

by fully-supported densities pθ(x|z), qφ(z|x) (like VAE).
• Compatibility:

(minθ,φ) C(θ, φ) := Epref(x,z)

∥∥∇x∇>z log
(
pθ(x|z)/qφ(z|x)

)∥∥2
F

.
– C(θ, φ) = 0⇐⇒ pθ(x|z)/qφ(z|x) a.e. factorizes.
– Generalizes cycle-consistency loss to probabilistic conditionals.
– Gaussian VAE: C(θ, φ) = 0⇐⇒mean fun. of p, q are affine!

For nonlinear repr., one conditional must not be Gaussian.
– Scalable unbiased stochastic estimate:

Epref(x,z)Ep(η):E[η]=0,Cov[η]=I

∥∥∇z(η>∇x log (pθ(x|z)/qφ(z|x)))∥∥22.
Reduce O(dXdZ) to O(dX + dZ).

In absence of C(θ, φ): (after pretrained as a VAE)

Usage as a generative model:
• Fit data: max. likelihood est.

log pθ,φ(x) = − logEqφ(z′|x)[1/pθ(x|z′)].
– Est. expect. by reparameterization and logsumexp.
– Denoising auto-encoder (DAE) objective

Eqφ(z′|x)[log pθ(x|z′)] is improper: (1) > log pθ,φ(x);
(2) mode-collapses q thus hurts determinacy.

• Generate data: dynamics-based MCMC.

– More efficient than Gibbs sampling:
– Only requires unnormalized density:
pθ,φ(x) ∝ pθ(x|z)

qφ(z|x) ,∀z.

– E.g., Stochastic Gradient Langevin Dynamics:

x(t+1) = x(t) + ε∇x(t) log
pθ(x

(t)|z(t))
qφ(z(t)|x(t))

+
√
2ε η(t),

where z(t) ∼ qφ(z|x(t)), η(t) ∼ N (0, I).

REAL-WORLD EXPERIMENTS
Data generation and classification accuracy (%) using representation:

DAE
98.0±0.1 74.5±1.0

VAE
94.5±0.3 30.8±0.2

CyGen
98.3±0.1 75.8±0.5


