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Recap: Causal Semantic Generative model (CSG)
The problem:

• Deep supervised learning lacks robustness
to out-of-distribution (OOD) samples.

Goal:

• Learn a causal representation on a single supervised domain, that distinguishes
the semantic factor 𝑠 (e.g., shape) and variation factor 𝑣 (e.g., position, background).

CSG model:

• Only 𝑠 causes 𝑦 (changing background 𝑣 ↛ label 𝑦).

• Spurious 𝑠-𝑣 correlation (husky-dark, but put it in snow does not turn it into a wolf).

• Causal Invariance principle: causal mechanisms 𝑝 𝑥 𝑠, 𝑣 , 𝑝 𝑦 𝑠 are invariant,
while the change of prior 𝑝(𝑠, 𝑣) leads to domain shift.
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Recap: Causal Semantic Generative model (CSG)
Method

• Variational Bayes using inference model 𝑞 𝑠, 𝑣|𝑥 , for both
tractable learning (ELBO) and easy prediction (𝔼𝑞 𝑠, 𝑣 𝑥 𝑝 𝑦 𝑠 ).

• Predict on an unknown domain (OOD generalization):

Use an independent prior (CSG-ind).

• Predict with unsupervised data (domain adaptation):

Learn a new prior with the data (CSG-DA).

• To avoid two inference models:

Express the training-domain 𝑞 𝑠, 𝑣|𝑥 model (for fitting training data)
with the test-domain 𝑞⊥ 𝑠, 𝑣|𝑥 or ෤𝑞 𝑠, 𝑣|𝑥 model (for prediction)
via the relation between their targets.

3Chang Liu (MSRA)

𝑦 𝑥

𝑣𝑠

𝑝 𝑠, 𝑣

𝑝 𝑦|𝑠
𝑝 𝑥|𝑠, 𝑣

𝑞 𝑠, 𝑣|𝑥

Liu, C., Sun, X., Wang, J., Tang, H., Li, T., Qin, T., Chen, W., Liu, T. Y. Learning Causal Semantic Representation for Out-of-

Distribution Prediction. In Advances in Neural Information Processing Systems, 2021. [Slides]

𝑦 𝑥

𝑣𝑠

𝑝⊥ 𝑠, 𝑣 ≔ 𝑝 𝑠 𝑝 𝑣

𝑝 𝑦|𝑠
𝑝 𝑥|𝑠, 𝑣

𝑞⊥ 𝑠, 𝑣|𝑥

𝑦 𝑥

𝑣𝑠

෤𝑝 𝑠, 𝑣

𝑝 𝑦|𝑠
𝑝 𝑥|𝑠, 𝑣

෤𝑞 𝑠, 𝑣|𝑥

Train 
dom.

Test 
dom.

.%20https:/arxiv.org/pdf/2011.01681
https://changliu00.github.io/causupv/causupv-slides.pdf


Recap: Causal Semantic Generative model (CSG)
Theory
• A CSG is semantic-identified, if there is a

(1) reparametrization Φ to the ground-truth CSG, that

(2) does not mix 𝑣 into 𝑠, i.e. 𝑠 = Φ𝒮 𝑠∗, 𝑣∗ is constant of 𝑣∗.

• Thm (sem.-identifiability). A well-learned CSG (s.t. 𝑝 𝑥, 𝑦 = 𝑝∗ 𝑥, 𝑦 ) is semantic-identified, if:

(a) Additive noise stru. whose (b) fn. are bijective, (c) log 𝑝𝑠,𝑣 is bounded, and
(d) noise var. have vanishing variance 𝜎𝜇

2 or a.e. nonzero characteristic fn.

Benefits to OOD prediction:

• Thm (OOD gen). Given sem.-identification, prediction error on an unknown domain is bounded:

𝔼 ෤𝑝∗ 𝑥 𝔼 𝑦 𝑥 − ෩𝔼∗ 𝑦 𝑥
2

2
≤ 𝐶𝜎𝜇

4𝔼 ෤𝑝𝑠,𝑣 ∇ log ෤𝑝𝑠,𝑣/𝑝𝑠,𝑣 2

2
.

• Thm (DA). Given sem.-identification, a well-learned new prior ෤𝑝𝑠,𝑣 (s.t. ෤𝑝 𝑥 = ෤𝑝∗ 𝑥 ) is a 
reparametrized ground-truth ෤𝑝𝑠,𝑣

∗ , and makes an accurate prediction: ෩𝔼 𝑦|𝑥 = ෩𝔼∗ 𝑦|𝑥 .
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• 𝑠, 𝑣 = Φ 𝑠∗, 𝑣∗ s.t.: Φ# 𝑝𝑠,𝑣
∗ = 𝑝𝑠,𝑣,

𝑝∗ 𝑥 𝑠∗, 𝑣∗ = 𝑝 𝑥 Φ 𝑠∗, 𝑣∗ , 𝑝∗ 𝑦 𝑠∗ = 𝑝 𝑦 Φ𝒮 𝑠∗, 𝑣∗ .

• Describes the difference b/w CSGs with the same 𝑝 𝑥, 𝑦 .

Excl. deterministic 𝑠-𝑣 relation

CSG-ind makes a smaller bound
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Latent Causal Invariant Model (LaCIM)
Extending CSG for multiple supervised domains
(i.e., domain generalization):
• Model the dependency on domain index 𝑑.

• Ascribe the spurious 𝑠-𝑣 correlation to a confounder 𝑐:

integrating out 𝑐 renders 𝑠-𝑣 correlated: 𝑝𝑑 𝑠, 𝑣 = 𝑝𝑑׬ 𝑐 𝑝𝑑 𝑠 𝑐 𝑝𝑑 𝑣 𝑐 d𝑐.

• Causal invariance ➔ 𝑝 𝑥|𝑠, 𝑣 , 𝑝 𝑦|𝑠 do not depend on 𝑑, while 𝑝𝑑 𝑠, 𝑣 , 𝑞𝑑 𝑠, 𝑣 𝑥 do.

Method

• Training: Apply CSG training objective to each domain, with the respective 𝑝𝑑 𝑠, 𝑣 , 𝑞𝑑 𝑠, 𝑣 𝑥 :

max
𝑝𝑑 𝑠,𝑣 ,𝑝 𝑥 𝑠, 𝑣 ,𝑝 𝑦 𝑠 ,𝑞𝑑 𝑠, 𝑣 𝑥

෍

𝑑∈ 𝐷

𝔼𝑝∗𝑑 𝑥,𝑦 log 𝑞𝑑 𝑦 𝑥 +
1

𝑞𝑑 𝑦 𝑥
𝔼𝑞𝑑 𝑠, 𝑣 𝑥 𝑝 𝑦 𝑠 log

𝑝𝑑 𝑠, 𝑣 𝑝 𝑥 𝑠, 𝑣

𝑞𝑑 𝑠, 𝑣 𝑥
,

where 𝑞𝑑 𝑦 𝑥 ≔ 𝔼𝑞𝑑 𝑠, 𝑣 𝑥 𝑝 𝑦 𝑠 .

• Prediction in an unseen test domain 𝑑′:

Similar to CSG-ind, but by direct optimization (Max. A Posteriori est., not by inference model 𝑞⊥ 𝑠, 𝑣 𝑥 ):

𝑝𝑑
′
𝑦|𝑥 = 𝑝 𝑦 𝑠 𝑥 , where 𝑠 𝑥 , 𝑣 𝑥 ≔ argmax

𝑠,𝑣
𝑝 𝑥 𝑠, 𝑣 𝑝⊥ 𝑠, 𝑣 𝜆.
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Latent Causal Invariant Model (LaCIM)
Identifiability theory

• Definition considering the dependence on 𝑑:

Let  𝑝𝑑 𝑠 𝑐 ∝ ς𝑖∈ 𝑁S
exp 𝜃𝑖

𝑑 𝑐 ⊤𝑆𝑖 𝑠𝑖 + 𝐴𝑖 𝑠𝑖

and 𝑝𝑑 𝑣 𝑐 ∝ ς𝑗∈ 𝑁V
exp 𝜙𝑗

𝑑 𝑐 ⊤𝑉𝑗 𝑣𝑗 + 𝐵𝑗 𝑣𝑗 be in exponential family.

Then a learned LaCIM is exp.-identified, if there is a

(1) reparameterization Φ to the gnd.-truth LaCIM, that

(2) recovers 𝑆 and 𝑉, up to a dimension permutation of each.

• Theorem. A well-learned LaCIM is exp.-identified, if:

(a) Additive noise stru. whose (b) fn. are bijective and (c) noise var. have a.e. nonzero characteristic fn. 
(d) The 𝐾S component fn. of 𝑆𝑖 are lin. indep., ∀𝑖 ∈ 𝑁S (sim. for each 𝑉𝑗). (e) 𝑝𝑑 𝑐 = Cat 𝑐 𝜉𝑑 .
(f) The 𝐷 datasets are diverse enough s.t.: rank 𝜉𝑑 𝑑∈ 𝐷 = 𝐶, and

rank concat 𝜃𝑖
𝑑 𝑐 − 𝜃𝑖

𝑑 1
𝑖∈ 𝑁S 𝑐∈ 2,…,𝐶 ,𝑑∈ 𝐷

= 𝑁S𝐾S (sim. for 𝜙𝑗
𝑑).

• Stronger conclusion than CSG: due to multi-domain info., and exp. family structure.

• Stronger conclusion than iVAE [Khemakhem’20a]: 𝑠 and 𝑣 are separated; 𝑝𝑑 𝑠, 𝑣 allows a correlation.
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Latent Causal Invariant Model (LaCIM)
• Experiments: Test-domain accuracy (%)
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Latent Causal Invariant Model (LaCIM)
• Experiments: Visualization
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Thanks!
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